DOC PREVIEW
UT M 408D - SERIES PROBLEMS

This preview shows page 1-2 out of 6 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

M 408D SERIES PROBLEMSDAVID BEN MCREYNOLDSProblem 1 (Easy-Medium). Determine whether the following seriesconverge or diverge.∞Xn=1n2+ 33n∞Xn=1nn(2n + 1)!∞Xn=1(π − e)nn!nn∞Xn=11n2− 1∞Xn=1sin n5n∞Xn=13n+17n∞Xn=11sin1n∞Xn=2n2+ 1n2ln n∞Xn=1π + n5(3n + 1)!∞Xn=1sin1n∞Xn=1(n!)2(2n)!∞Xn=11n√3∞Xn=1e−n∞Xn=1tan1n∞Xn=13n(n + 3)Problem 2 (Easy-Medium). Evaluate the following limits.limx−→π−2cos xln(sin x)limx−→01ex− 1−1xlimx−→∞rk2+ 1k2xlimx−→∞101xlimx−→06x− 3x4xlimx−→0ax− bxxlimx−→0sin xx1x2limx−→∞x − sin xxlimx−→∞ex+ e2x1xDate: February 6, 2002.12 DAVID BEN MCREYNOLDSProblem 3 (Medium). Determine whether the following series con-verge or diverge. Some of these are ridiculously hard!∞Xn=21(ln n)ln n∞Xn=12n + 1n2+ n∞Xn=1(n!)nnn!∞Xn=1(nn)!nnn∞Xn=122n4n+1∞Xn=112ln n∞Xn=1cos(2nπ)10n∞Xn=1n3+ 3n2+ 3n + 1(n + 1)6∞Xn=13nn!n2nProblem 4 (Hard). Suppose that we have the following for functionsf(x) and g(x):f(0) = 1 g(0) = ∞f0(0)f(0)= 1−g0(0)(g(0))2= 1Then findlimx−→0f(x)g(x)Problem 5 (Easy). Determine whether the following series convergeor diverge.∞Xn=2n ln n + 1n3ln n∞Xn=11 + 2n3n∞Xn=1n!nn∞Xn=11 + n3πn∞Xn=16n+ 14n+10∞Xn=1nn1192n∞Xn=1n + 32n + n2∞Xn=1ln nn2∞Xn=11n1.001Problem 6 (Medium). Suppose that anis a sequence of numbers andlimn−→∞nan= Lwhere 0 < L < ∞, then what can you say about∞Xn=1anM 408D SERIES PROBLEMS 3Problem 7 (Easy). Determine whether the following series convergeor diverge.∞Xn=2(−1)nn ln n∞Xn=12n4n2− 1∞Xn=1(−1)n24n(2n + 1)!∞Xn=1n7nn!∞Xn=1n23n∞Xn=1n32n∞Xn=1(−1)nlnn + 2n∞Xn=11033√n∞Xn=1n√n − 1nProblem 8 (Easy). Determine whether the following series convergeor diverge.∞Xn=1ne−n∞Xn=11nπ∞Xn=1ne−n2∞Xn=11 +1nn∞Xn=11n√n2− 1∞Xn=1n + 1010n + 1∞Xn=11n(n + 3)∞Xn=11n(n + 1)∞Xn=12n+ 12n+1Problem 9 (Easy-Medium). Determine whether the following seriesconverge or diverge.∞Xn=21n ln n ln(ln n)4 DAVID BEN MCREYNOLDSProblem 10 (Easy-Medium). Determine whether the following seriesconverges conditionally, absolutely, or diverges.∞Xn=1(−1)n(n2+ 1)4n4+ 1∞Xn=1(−1)nn∞Xn=1(−1)n(n + 2)3n2+ 5∞Xn=13 + 4(−1)nn3+ 8∞Xn=2(−1)nn ln n∞Xn=2(−1)nln nn∞Xn=1(−1)n(2n + 3)32n(n + 1)!∞Xn=1(−1)ne−3n∞Xn=1(−1)n3√n∞Xn=1(−1)nn√n∞Xn=1cos(nπ)n + 1∞Xn=1(−1)n3nn2n∞Xn=1(−1)ncos(nπ)∞Xn=1(−1)nsin(nπ)∞Xn=1(−1)nlnn + 2nProblem 11 (Limit Comparison). Use the Limit Comparison Test todetermine the convergence or divergence of the series.∞Xn=1nn2+ 1∞Xn=21√n2− 1∞Xn=12n2− 13n5+ 2n + 1∞Xn=1n + 3n(n + 2)∞Xn=11n +√n2+ 1∞Xn=112n− 5∞Xn=11n! + 6n3∞Xn=1n2n3+ 1∞Xn=1n35n4+ 3Problem 12 (Alternating Series Test). Use the Alternating Series testto determine the convergence or divergence of the series.∞Xn=1(−1)n+1n∞Xn=2(−1)nln n∞Xn=1(−1)nn2n2+ 1∞Xn=1(−1)n(2n)!∞Xn=1(−1)n+1√nn + 2∞Xn=11nsin(2n − 1)π2∞Xn=12(−1)n+1en− e−n∞Xn=12(−1)n+1en+ e−n∞Xn=1(−1)n+1ln(n + 1)n + 1M 408D SERIES PROBLEMS 5Problem 13 (Ratio Test). Use the Ratio Test to test for convergenceor divergence of the series.∞Xn=1n!3n∞Xn=1(n!)2(3n)!∞Xn=14nn!∞Xn=1n22n∞Xn=1(2n)!n5∞Xn=13n(n + 1)nProblem 14 (Root Test). Use the Root Test to test for convergenceor divergence of the series.∞Xn=1n2n + 1n∞Xn=12n√n + 1n∞Xn=1n√n − 1n∞Xn=1ln nnn∞Xn=12nn + 1n∞Xn=21ln nnProblem 15 (Integral Test). Use the Integral Test to test for conver-gence or divergence of the given series.∞Xn=11n + 1∞Xn=1e−n∞Xn=1ne−n∞Xn=1e−ncos n∞Xn=1nk−1nk+ c∞Xn=1nn2+ 36 DAVID BEN MCREYNOLDSProblem 16. Do the following series converge or diverge? Why? Showall work!.∞Xn=1nn3+ 2n∞Xn=1n!n2n∞Xn=1n2− nn4+ 1∞Xn=11n! +√n∞Xn=1nn(n + 1)n∞Xn=1√n(n − 1)n∞Xn=21√n ln n∞Xn=1n −√nn3+√n∞Xn=1nn2+1n∞Xn=2n(ln n)n∞Xn=1(2n + 1)2n(n2+ 1)n∞Xn=1e1nn∞Xn=11√n3+ n∞Xn=1(−1)n√nn + 1∞Xn=11n + ln n∞Xn=1n!n2nProblem 17. Compute the f ollowing limits. Show work.limn−→∞1n1nlimx−→0+xln xlimn−→∞1 −1n2nlimn−→∞n312nlimn−→∞n1√nlimx−→0+ln xxlimn−→∞1√nn2limn−→∞1 +1n + 1nlimn−→∞2n1nUniversity of Texas at Austin, Department of MathematicsE-mail address :


View Full Document

UT M 408D - SERIES PROBLEMS

Download SERIES PROBLEMS
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view SERIES PROBLEMS and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view SERIES PROBLEMS 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?