DOC PREVIEW
UT M 408D - Homework 14.3-solutions

This preview shows page 1-2-3 out of 10 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

ha (lvh262) – Homework 14.3 – karakurt – (56295) 1This print-out should have 29 questions.Multiple-choice questions may continue onthe next column or page – find all choicesbefore answering.001 10.0 pointsDetermine fx− fywhenf(x, y) = 2x2− 3xy + 2y2− x + 2y .1. fx− fy= x + y − 32. fx− fy= 7x − 7y + 13. fx− fy= 7x − 7y − 3 correct4. fx− fy= x + y + 15. fx− fy= x − 7y + 16. fx− fy= 7x + y − 3Explanation:After differentiation we see t hatfx= 4x − 3y − 1 , fy= −3x + 4y + 2 .Consequently,fx− fy= 7x − 7y − 3 .002 10.0 pointsDetermine fxwhenf(x , y) = (x2− 2y)(y2− x) .1. fx= 2y − 2xy2− 3x22. fx= 2xy2+ 2y − 3x2correct3. fx= y − 4xy2+ 3x24. fx= 2xy2− 2y − 3x25. fx= 4xy2− y + 3x26. fx= y + 4xy2+ 3x2Explanation:From the Product Rule we see thatfx= 2x(y2− x) − (x2− 2y) .Consequently,fx= 2xy2+ 2y − 3x2.003 10.0 pointsDetermine fxwhenf(x, y) = x sin(y − x) − cos(y − x) .1. fx= −2 sin(y − x) − x cos(y − x)2. fx= −x sin(y − x)3. fx= x cos(y − x)4. fx= x sin(y − x)5. fx= −x cos(y − x) correct6. fx= − cos(y − x) − x sin(y − x)7. fx= 2 sin(y − x) − x cos(y − x)8. fx= x cos(y − x) − sin(y − x)Explanation:From the Product Rule we see thatfx= sin(y − x) − x cos(y − x) − sin(y − x) .Consequently,fx= −x cos(y − x) .004 10.0 pointsDetermine fxwhenf(x, y) = x sin(x + 2y) + cos(x + 2y) .ha (lvh262) – Homework 14.3 – karakurt – (56295) 21. fx= 2 cos(x + 2y) + x sin(x + 2y)2. fx= 2 si n(x + 2y) + x cos(x + 2y)3. fx= x cos(x + 2y) correct4. fx= −2x sin(x + 2y)5. fx= 2x cos(x + 2y)6. fx= 2 si n(x + 2y) − x cos(x + 2y)7. fx= 2 cos(x + 2y) − x sin(x + 2y)8. fx= −x sin(x + 2y)Explanation:From the Product Rule we see thatfx= sin(x+2y)+x cos( x+2 y)− sin(x+2y) .Consequently,fx= x cos(x + 2y) .005 10.0 pointsDetermine fywhenf(x, y) = y cos(3x − y) − sin(3x − y) .1. fy= 2 cos(3x−y)+y sin(3x−y) correct2. fy= −y cos(3x − y)3. fy= 2 si n(3x − y) − y cos(3 x − y)4. fy= −y sin(3x − y)5. fy= −2 sin(3x − y) + y cos (3x − y)6. fy= −2 cos(3x − y) − y sin (3x − y)7. fy= y sin(3x − y)8. fy= y cos(3x − y)Explanation:From the Product Rule we see thatfy= cos(3x− y) + y sin(3x− y) + cos(3x− y) .Consequently,fy= 2 cos(3x − y) + y sin(3x − y) .006 10.0 pointsFind the slope in the x-direction at thepoint P (0, 2, f(0, 2)) on the graph of f whenf(x, y) = 4(y2− x2) l n( x + y) .1. slope = 62. slope = 43. slope = 24. slope = 105. slope = 8 correctExplanation:The graph of f is a surface in 3-spaceand the slope in the x-direction at the pointP (0, 2, f(0, 2)) on that surface is the value ofthe partial derivative fxat (0, 2). Nowfx= 4−2x ln(x + y) +y2− x2x + y.Consequently, at P (0, 2, f(0, 2))slope = 2 × 4 = 8 .007 10.0 pointsDetermine fywhenf(x , y) =x − 2 y2 x + y.1. fy=3 x(2 x + y)22. fy= −4 x(2 x + y)2ha (lvh262) – Homework 14.3 – karakurt – (56295) 33. fy=5 x(2 x + y)24. fy= −5 x(2 x + y)2correct5. fy=4 x(2 x + y)26. fy= −3 x(2 x + y)2Explanation:From the Quotient Rule we see thatfy=−2 (2 x + y) − ( x − 2 y)(2 x + y)2.Consequently,fy= −5 x(2 x + y)2.008 10.0 pointsFind the value of fxat (3, 3) whenf(x, y) = 6x3− 3x2y − 6x + 3y.Correct answer: 102.Explanation:After differentiation,fx=∂f∂x= 18x2− 6xy − 6.At (3 , 3), therefore,fx(3,3)= 102.009 10.0 pointsDetermine∂z∂ywhen z = 3ex/2y.1.∂z∂y=3x2yex/2y2.∂z∂y= −3x2yex/2y3.∂z∂y= −3x2y2ex/2ycorrect4.∂z∂y= −32y2ex/2y5.∂z∂y=32y2ex/2y6.∂z∂y=3x2y2ex/2yExplanation:Differentiating z with respect to y keepingx fixed we see that∂z∂y= 3ex/2y·∂(x /2y)∂y.Consequently,∂z∂y= −3x2y2ex/2y.010 10.0 pointsDetermine h = h(x, y) so that∂f∂x=h(x, y)(3 x2+ 3 y2)2whenf(x, y) =4x2y3 x2+ 3 y2.1. h(x, y) = 2 4xy22. h(x, y) = 1 2xy23. h(x, y) = 2 4x3y4. h(x, y) = 2 4xy3correct5. h(x, y) = 1 2xy3ha (lvh262) – Homework 14.3 – karakurt – (56295) 46. h(x, y) = 12x3yExplanation:Differentiating with respect to x using thequotient rule we obtai n∂f∂x=8xy(3x2+ 3 y2) − 24x3y(3x2+ 3y2)2.Consequently,h(x, y) = 24xy3.011 10.0 pointsFind the value of fxat (2, 1) whenf(x, y) =2x2+ 3xyx + y.Correct answer: 2.11111.Explanation:After differentiation using the quotient rulewe see thatfx=(x + y) (4x + 3y) − 2x2− 3xy(x + y)2=2x2+ 4xy + 3y2(x + y)2.At (2 , 1), therefore.fx(2, 1)=199.012 10.0 pointsFind fxwhenf(x, y) = ln(px2+ y2− x) .1. fx=xpx2+ y22. fx=1px2− y23. fx= −1px2+ y2correct4. fx=xpx2− y25. fx= −1px2− y26. fx=1px2+ y2Explanation:Differentiating with respect to x keeping yfixed, we see thatfx=xpx2+ y2− 1px2+ y2− x.Butxpx2+ y2− 1 =x −px2+ y2px2+ y2.Consequently,fx= −1px2+ y2.013 10.0 pointsFind fxwhenf(x, y) =Zxycost4dt .1. fx= sinx42. fx= cosx4correct3. fx= 04. fx= 4x3sinx45. fx= 4x3cosx4Explanation:ha (lvh262) – Homework 14.3 – karakurt – (56295) 5By the Fundamental theorem of calculus,∂f∂x=∂∂xZxycost4dt= cosx4.014 10.0 pointsDetermine fxywhenf(x, y) =12y tan−1(xy) .1. fxy= −xy2(1 + x2y2)2. fxy=x(1 + x2y2)23. fxy=xy2(1 + x2y2)4. fxy= −y2(1 + x2y2)5. fxy= −x(1 + x2y2)26. fxy=y(1 + x2y2)2correctExplanation:Since we can choo se whether to differentiatewith respect to x or y first, for simplicity wewill choose to differentiate first with respectto x because then the algebra is simpler.Indeed, by the Chain Rule,fx=12y∂∂xtan−1(xy)=12y211 + (xy)2=y22(1 + x2y2).Thus by the Quotient Rulefxy=122y(1 + x2y2) − y2(2x2y)(1 + x2y2)2.Consequently,fxy=y(1 + x2y2)2.keywords: partial differentiation, mixed par-tial derivative, Chain Rule, inverse tangent,PartialDiffMV, PartialDiffMVExam,015 10.0 pointsDetermine fxywhenf(x, y) = y tan−1(xy) .1. fxy=2x(1 + x2y2)22. fxy=2x1 + x2y23. fxy=x(1 + x2y2)24. fxy=2y(1 + x2y2)2correct5. fxy=y(1 + x2y2)26. fxy=2y1 + x2y2Explanation:Differentiating f partia lly with respect tox, using also the Chain Rule andddxtan−1x =11 + x2,we see thatfx= yy1 + x2y2.But after simplification,fx=y2(1 + x2y2).Differentiating partially now with respect toy we see thatfxy=(1 + x2y2) · 2y − y2(2x2y)(1 + x2y2)2.ha (lvh262) – Homework 14.3 – karakurt – (56295) 6But after simplification once again,fxy=2y(1 + x2y2)2.keywords: partial differentiation, mixed par-tial derivative, Chain Rule, inverse tangent,016 10.0 pointsFind utwhenu = xe−6tsin θ .1. ut= −6xe−6tsin θ


View Full Document

UT M 408D - Homework 14.3-solutions

Download Homework 14.3-solutions
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Homework 14.3-solutions and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Homework 14.3-solutions 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?