DOC PREVIEW
UT M 408D - HW02-solutions

This preview shows page 1-2-3-4 out of 13 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

tapia (jat4858) – HW02 – clark – (52990) 1This print-out should have 24 questions.Multiple-choice questions may continue o nthe next column or page – find all choicesbefore answering.001 10.0 pointsRewrite the expressionf(x) =4x − 1x2(x − 2)using partial fractions.1. f(x) =1x2−7x − 22. f(x) = −1x2+7x − 23. f(x) =7x−12x2+74(x − 2)4. f(x) =12x−74x2−74(x − 2)5. f(x) = −74x+12x2+74(x − 2)correctExplanation:We have to find A, B, and C so that4x − 1x2(x − 2)=Ax+Bx2+Cx − 2=Ax(x − 2) + B(x −2) + Cx2x2(x − 2).Thus4x − 1 = Ax(x − 2) + B(x − 2) + Cx2.Nowx = 0 =⇒ B =12,whilex = 2 =⇒ C =74.But then on comparing coefficients of x2wesee thatA + C = 0 =⇒ A = −74.Consequently,f(x) = −74x+12x2+74(x − 2).002 10.0 pointsIn the partial fractions decomposi tion ofthe expressionf(x) =x3+ 2x + 3x2+ x − 2,find the term having denominator x + 2.1.1x + 22.3x + 2correct3. −3x + 24. −1x + 25.2x + 26. −2x + 2Explanation:As f(x) = P (x)/Q(x) with degP ≥ degQ,we begin with long divi sion:x −1x2+ x − 2 x3+0x2+2x +3x3+x2−2x−x2+4x +3−x2−x +25x +1Thusf(x) = x − 1 +5x + 1x2+ x − 2.On the other hand,x2+ x − 2 = (x − 1)(x + 2) ,tapia (jat4858) – HW02 – clark – (52990) 2so we look for B and C satisfying5x + 1x2+ x − 2=Bx − 1+Cx + 2.Multiplying through by (x −1) (x + 2) gives5x + 1 = B(x + 2) + C(x − 1) .so after substituting x = 1 and x = −2, wesee t hatB = 2 , C = 3 .Consequently, f (x) has partial fraction de-compositionf(x) = x −1 +2x − 1+3x + 2.keywords: partial fractions003 10.0 pointsDetermine the indefinite integralI =Zx + 8(x + 2)(x − 4)dx .1. I = ln(x − 4)2|x + 2|+ C correct2. I = lnx − 4x + 2+ C3. I = ln(x − 4)2x + 2+ C4. I = ln|x + 2|(x − 4)2+ C5. I = lnx + 2(x − 4)2+ CExplanation:First we have to determine the partial frac-tion decompo sitionx + 8(x + 2) ( x − 4)=Ax + 2+Bx − 4.Multiply through by (x + 2)(x − 4). Thenx + 8 = A( x − 4) + B(x + 2) .Setting x = 4 gives 12 = 6B, i.e, B = 2, whilesetting x = −2 gives 6 = −6A, i.e., A = −1.Thus,I =Z−1x + 2+2x − 4dx= −ln (|x + 2|) + 2 ln (|x − 4|) + C .Consequently,I = ln(x − 4)2|x + 2|+ Cwith C an arbitrary constant.004 10.0 pointsFind the unique function y satisfying theequationsdydx=3(x − 1)(5 − x), y(2) = 0.1. y = 3ln5 − xx − 1− ln(3)2. y =34ln5 − xx − 1− ln(3)3. y = 3lnx − 15 − x+ ln(3)4. y =34lnx − 15 − x+ ln(3)correct5. y =14lnx − 15 − x+ ln(3)Explanation:We first find A, B so that3(x − 1)(5 − x)=Ax − 1+B5 − xby bringing the right hand side to a commondenominator. In this case,3(x − 1)(5 − x)=A(5 − x) + B(x − 1)(x − 1)(5 − x),tapia (jat4858) – HW02 – clark – (52990) 3and soA(5 − x) + B(x −1) = 3.To find the values of A, B particular choices ofx are made When x = 1 , for instance, A =34,while when x = 5, B =34. Thusdydx=341x − 1+15 − x.Hence after integration,y =34(ln (|x − 1|) − ln (|5 − x|)) + C=34lnx − 15 − x+ Cwith C an arbitrary constant. Buty(2) = 0 =⇒ C = −34ln13,i.e.,C =34ln(3).Consequently,y =34lnx − 15 − x+ ln(3).005 10.0 pointsEvaluate the integralI =Z102x2(x + 1)(x2+ 1)dx .1. I = ln(8) −π22. I =12ln(8) −π2correct3. I =π2− ln(2)4. I =12π2− ln(2)5. I =12ln(2) +π26. I = ln(2) +π2Explanation:By partial fractions,2x2(x + 1)(x2+ 1)=Ax + 1+Bx + Cx2+ 1.To determine A, B, and C multiply throughby (x + 1)(x2+ 1): for then2x2= A(x2+ 1) + (x + 1)(Bx + C)= ( A + B)x2+ (B + C)x + (A + C) ,which after comparing coefficients g ivesB = −C , A = −C , B = 1 .ThusI =Z101x + 1+x − 1x2+ 1dx=Z101x + 1dx +Z10xx2+ 1dx−Z101x2+ 1dx,and soI =hln(x + 1) +12ln(x2+ 1)− tan−1(x)i10=12hln((x + 1)2(x2+ 1)) − 2 tan−1(x)i10.Consequently,I =12ln(8) −π2.006 10.0 pointsDetermine the integralI =Zx2− 3x + 5x2− x − 2dx .tapia (jat4858) – HW02 – clark – (52990) 41. I = x − ln(x + 1)3x − 2+ C correct2. I = x − ln(x + 1)3(x − 2)+ C3. I = x − ln(x − 1)3x + 2+ C4. I = x + ln(x + 1)3x − 2+ C5. I = x + ln(x − 1)3(x + 2)+ C6. I = x + ln(x − 1)3x + 2+ CExplanation:By division,x2− 3x + 5x2− x − 2=(x2− x − 2) − 2x + 7x2− x − 2= 1 −2x − 7x2− x − 2.But by partial fractions,2x − 7x2− x − 2=3x + 1−1x − 2.ThusI =Z1 −3x + 1+1x − 2dx .NowZ3x + 1dx = 3 ln |x + 1| + C1,whileZ1x − 2dx = ln |x − 2| + C2.Consequently,I = x − ln(x + 1)3x − 2+ C.keywords: division, partial007 10.0 pointsAt a branch of UT there ar e approximately37000 students. A flu epidemic is spreadingamong these students at a rate proportional tothe product of the number of infected studentsand the number of students who have not beeninfected.Initially 1000 student s were infected, and10 days later 6000 were infected. What per-cent a ge of the student body was infected a fter20 days?(Hint: to simpl ify the algebra, let N(t) bethe number of infected students (in mult iplesof 1000).)1. 3.61 %2. 3.88 %3. 57.42 % correct4. 55.86 %5. 78.07 %Explanation:The product of the number infected andthe number not infected is N(37 − N ), so themodel says thatdNdt= kN(37 − N)where k is a constant. After separating vari-ables and integrating this becomesZ1N(37 − N )dN = kZdt = kt + Cwith C an arbitrary constant. To integratethe left hand side set1N(37 − N )=A1N+A237 − N.tapia (jat4858) – HW02 – clark – (52990) 5But then1N(37 − N )=A1(37 − N) + A2NN(37 − N ),so1 = A1(37−N)+A2N = 37A1+(A2−A1)N.ThusA1=137, A2=137.Consequently,Z1N(37 − N )dN=137Z1NdN +137Z137 − NdN=137lnN37 − N.ThusN37 − N= Ae37kt,so the general solution of (†) is given byN(t) =37AA + e−37ktwhere A is an arbitrary constant.The data(‡) N(0) = 1, N(10) = 6determine the values of A and k. Indeed, fromthe first equation in (‡) it follows that37A = (A + 1), i .e., A =136,soN(t) =371 + 36e−37kt.On the other hand, to determine k we use thesecond equation in (‡), for then it follows that6 =371 + 36e−370k,i.e.,−37k =110lnn1(31)(36)(6)o= −0.1 94129.HenceN(t) =371


View Full Document

UT M 408D - HW02-solutions

Download HW02-solutions
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view HW02-solutions and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view HW02-solutions 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?