DOC PREVIEW
UT M 408D - HW10-solutions

This preview shows page 1-2-3-4 out of 12 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

tapia (jat4858) – HW10 – clark – (52990) 1This print-out should have 21 questions.Multiple-choice questions may continue o nthe next column or page – find all choicesbefore answering.001 10.0 pointsDetermine the value of f(2) whenf(x) =x42−2x344+3x546+ . . . .(Hint: differentiate the power series expan-sion of (x2+ 42)−1.)1. f(2) =1502. f(2) =225correct3. f(2) =454. f(2) =1105. f(2) =425Explanation:The g eometr ic series142+ x=14211 + x/42=1421 −x42+x244−x346+ . . .has interval of convergence (−16, 16). But ifwe now restri ct x to the interval (−4, 4) andreplace x by x2we see that142+ x2=1421 −x242+x444−x646+ . . .on the interval (−4, 4). In additio n, in thisinterval the series expansion of the deriva-tive of the left hand side is the term-by-termderivative of the series on the right:−2x(x2+ 42)2=142−2x42+4x344−6x546+ . . ..Consequently, on the interval (−4, 4) thefunction f defined byf(x) =x42−2x344+3x546+ . . .can be identified withf(x) =42x(x2+ 42)2.As x = 2 lies in (−4, 4), we thus see thatf(2) =225.keywords:002 10.0 pointsFind a power series representation for thefunctionf(y) = ln(4 − y) .1. f (y) = ln(4) +∞Xn = 0ynn 4n2. f (y) = −∞Xn = 1ynn4n3. f (y) = ln(4) +∞Xn = 1yn4n4. f (y) =∞Xn = 0ynn 4n5. f (y) = ln(4) −∞Xn = 0yn4n6. f (y) = ln(4) −∞Xn = 1ynn 4ncorrectExplanation:We can either use the known power seriesrepresentationln(1 − x) = −∞Xn = 1xnn,tapia (jat4858) – HW10 – clark – (52 990) 2or the fact thatln(1 − x ) = −Zx011 − sds= −Zx0∞Xn = 0snds= −∞Xn = 0Zx0snds = −∞Xn = 1xnn.For then by properties of logs,f(y) = ln(4)1−14y= l n( 4)+ln1−14y,so thatf(y) = ln(4) −∞Xn = 1ynn 4n.003 10.0 pointsCompare the radius of convergence, R1, ofthe series∞Xn = 0cnxnwith the radius of convergence, R2, of theseries∞Xn = 1n cnxn−1whenlimn → ∞cn+1cn= 2 .1. R1= R2=12correct2. R1= 2R2=123. 2R1= R2=124. R1= R2= 25. R1= 2R2= 26. 2R1= R2= 2Explanation:Whenlimn → ∞cn+1cn= 2 ,the Ratio Test ensures that the series∞Xn = 0cnxnis(i) convergent when |x| <12, and(ii) divergent when |x| >12.On the ot her hand, sincelimn → ∞(n + 1)cn+1ncn= limn → ∞cn+1cn,the Ratio Test ensures also that the series∞Xn = 1n cnxn−1is(i) convergent when |x| <12, and(ii) divergent when |x| >12.Consequently,R1= R2=12.004 10.0 pointsFind a power series representation for thefunctionf(y) =y9y + 1.1. f (y) =∞Xn = 0(−1)n3nyn+12. f (y) =∞Xn = 03nyntapia (jat4858) – HW10 – clark – (52 990) 33. f(y) =∞Xn = 032nyn4. f(y) =∞Xn = 032nyn+15. f(y) =∞Xn = 0(−1)n3nyn6. f(y) =∞Xn = 0(−1)n32nyn+1correctExplanation:After simplification,f(y) =y9y + 1=y1 − (−9y).On the ot her hand,11 − x=∞Xn = 0xn.Thusf(y) = y∞Xn = 0(−9y)n= y∞Xn = 0(−1)n32nyn.Consequently,f(y) =∞Xn = 0(−1)n32nyn+1.keywords:005 10.0 pointsDetermine the interval of convergence forthe power series representation off(x) = tan−1x5centered at the origin obtained by integratingthe power series expansion for 1/(1 + x2).1. interval of cgce. =h−15,152. interval of cgce. =h−15,15i3. interval of cgce. = (−5, 5]4. interval of cgce. = [−5, 5] correct5. interval of cgce. =−15,15i6. interval of cgce. = [−5, 5)Explanation:Since11 − x= 1 + x + x2+ x3+ . . . ,we see t hat11 + x2=11 − (−(x)2)= 1 −x2+ (−x2)2− (x2)3+ . . .=∞Xn = 0(−1)nx2n.NowZx011 + t2dt = tan−1(x) ,whileZx0∞Xn = 0(−1)nx2ndt =∞Xn = 0(−1)n2n + 1x2n+1.Thustan−1(x) =∞Xn = 0(−1)n2n + 1x2n+1,from which it follows thatf(x) = tan−1x5=∞Xn = 0(−1)n2n + 1x52n+1.tapia (jat4858) – HW10 – clark – (52 990) 4To determine the interval of convergence ofthe power series, setan=(−1)n(2n + 1)x52n+1.Thenan+1an=2n + 12n + 3x52,and solimn → ∞an+1an=x52.By the Ratio Test, therefore, the power seriesconverges when |x| < 5 and diverges when|x| > 5.On the ot her hand, at x = 5 the seriesreduces to∞Xn = 0(−1)n2n + 1,which converges by t he Alternating seriesTest, while at x = −5 the series reduces to∞Xn = 0(−1)n+12n + 1,which converges again by the Alternating Se-ries Test. Consequently, the power series rep-resentation for f(x) obtained from the seriesexpansion for 1/(1 − x) hasinterval of convergence = [−5, 5] .keywords:006 10.0 pointsFind a power series representation for thefunctionf(t) = lnr1 − 3t1 + 3t.(Hint: remember properties of logs.)1. f(t) =∞Xn=132n2nt2n2. f(t) = −∞Xn=132n−12n − 1t2n−1correct3. f (t) =∞Xn=132n−12n − 1t2n−14. f (t) = −∞Xn=132n2nt2n5. f (t) =∞Xn=1(−1)n32n−12n − 1t2n−1Explanation:We know thatln(1 + x) = x −x22+x33− . . .=∞Xn=1(−1)n−1nxn,whileln(1 − x) = −x −x22−x33− . . .= −∞Xn=11nxn.Thusln(1 − x ) −ln(1 + x) = −2x +x33+x55+ . . .= −2 ∞Xn=112n − 1x2n−1!.Now by properties of logs,lnr1 − 3t1 + 3t=12ln1 − 3t1 + 3t=12(ln(1 − 3t) −ln(1 + 3t)) .Thusf(t) = −22 ∞Xn=112n − 1(3t)2n−1!,and sof(t) = −∞Xn=132n−12n − 1t2n−1.tapia (jat4858) – HW10 – clark – (52 990) 5007 10.0 pointsExpress the integralI =Ztan−1t4dtas a power series.1. I = C +∞Xn = 0(−1)nt8n+5(2n + 1)(8n + 5)correct2. I = C +∞Xn = 0(−1)nt8n+4(2n + 1)(8n + 5)3. I = C +∞Xn = 0(−1)nt8n+5(8n + 5)4. I = C +∞Xn = 0(−1)nt4n+4(2n + 1)5. I =∞Xn = 0(−1)nt8n+5(2n + 1)(8n + 5)Explanation:We know thattan−1(t) =∞Xn = 0(−1)nt2n+12n + 1.Replacing t wit h t4, we getI =Ztan−1t4dt=Z∞Xn = 0(−1)n(t4)2n+12n + 1dt .Consequently,I = C +∞Xn = 0(−1)nt8n+5(2n + 1)(8n + 5).008 10.0 pointsUse the Taylor series for e−x2to evaluatethe integralI =Z204 e−x2dx .1. I =∞Xk = 0(−1)kk!4 · 22k2. I =∞Xk = 0(−1)k2k + 14 · 22k+13. I =∞Xk = 01k!4 · 22k4. I =nXk = 01k!(2k + 1)4 · 22k+15. I =∞Xk = 0(−1)kk!(2k + 1)4 · 22k+1correctExplanation:The Taylor series for exis given byex= 1 + x +12!x2+ . . . +1n!xn+ . . .and its interval of convergence is (−∞, ∞).Thus we can substitute x → −x2for all val-ues of x, showing thate−x2=∞Xk = 0(−1)kk!x2keverywhere on (−∞, ∞) . ThusI =Z204∞Xk = 0(−1)kk!x2kdx.But we can change the order of summationand int egration on the interval o f convergence,soI = 4∞Xk = 0Z20(−1)kk!x2kdx= 4∞Xk = 0h(−1)kk!(2k +


View Full Document

UT M 408D - HW10-solutions

Download HW10-solutions
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view HW10-solutions and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view HW10-solutions 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?