New version page

# UT M 408D - Homework 10

Pages: 13
Documents in this Course

12 pages

23 pages

9 pages

12 pages

14 pages

14 pages

17 pages

4 pages

13 pages

9 pages

13 pages

11 pages

10 pages

6 pages

16 pages

5 pages

2 pages

8 pages

15 pages

5 pages

8 pages

5 pages

10 pages

2 pages

6 pages

9 pages

8 pages

9 pages

2 pages

2 pages

2 pages

6 pages

2 pages

2 pages

6 pages

## This preview shows page 1-2-3-4 out of 13 pages.

View Full Document
Do you want full access? Go Premium and unlock all 13 pages.
Do you want full access? Go Premium and unlock all 13 pages.
Do you want full access? Go Premium and unlock all 13 pages.
Do you want full access? Go Premium and unlock all 13 pages.

Unformatted text preview:

abdallah (haa2348) – Homework 10 Due by 11:59pm on Sun 5/3 – reyes – (52535) 1This print-out should have 31 questions.Multiple-choice questions may continue onthe next column or page – find all choicesbefore answering.001 10.0 pointsA rectangular piece of cardboard is 3 timesas long as it is wide. If the length of theshorter side is y inches and an open box isconstructed by cutting equal squares of side-length x inches from the corners of the piece ofcardboard and turning up the sides as shownin the figurexxx xxxxxDetermine the volume, V , of the box as afunction of x and y.1. V (x, y) = 3xy2+ 8x2y + 2x3cu. ins2. V (x, y) = 3xy2− 8x2y − 4x3cu. ins3. V (x, y) = 8xy2+ 3x2y − 2x3cu. ins4. V (x, y) = 8xy2− 3x2y + 2x3cu. ins5. V (x, y) = 3xy2−8x2y + 4x3cu. ins cor-rect6. V (x, y) = 8xy2+ 3x2y − 4x3cu. insExplanation:The rectangular sheet of cardboard willhave dimensions y × 3y. Thus the lengthof the shorter side of the base of the box isy − 2x, w hi le the length o f the longer side is3y − 2x. Since the height of the box is x, thevolume will thus beV ( x ) = (length) × (width) × (height)= x(3y − 2x)(y − 2x).Consequently,V (x) = 3xy2− 8x2y + 4x3cu. ins .002 10.0 pointsWhich of the following surfaces could havecontour map-4-3-2-101230-1121.zyxcorrect2.xzyabdallah (haa2348) – Homework 10 Due by 11:59pm on Sun 5/3 – reyes – (52535) 23.zxy4.zxy5.zxyExplanation:The graphs in the contour map are parallellines so the horizontal cross-sections of t hesurface are all lines as in planes and paraboliccylinders. On the other hand, the values of thecontours and the grid show that these cross-sections grow at a constant rate. Now for aplane the contours are equally spaced lines,whereas for a parabolic cylinder the cont ourswill be increasingly close together.Consequently, of the surfaces shown, theonly one having the given conto ur map is azyxkeywords:003 10.0 pointsWhich one of t he following surfaces is thegraph off(x, y) =12(8 − x2− y2) ?1.-2-1012x-2-1012y01234z-2-1012x-2-101201234correct2.-2-1012x-2-1012y-4-2024z-2-1012x-2-1012-4-2024abdallah (haa2348) – Homework 10 Due by 11:59pm on Sun 5/3 – reyes – (52535) 33.-2-1012x-2-1012y01234z-2-1012x-2-1012012344.-2-1012x-2-1012y02468z-2-1012x-2-1012024685.-2-1012x-2-1012y01234z-2-1012x-2-101201234Explanation:When y = 0 the function becomes z =(1/2)(8 − x2). Its graph is a parabola in thex-z plane opening downwards , i.e., a parabolaopening downwards in the plane y = 0. Thusthe cross-section of t he graph of f by theplane y = 0 should give a parabola openingdownwards . Similarly, the cross-section ofthe graph by the plane x = 0 gives a parabolaopening downwards.This is exactly the case with-2-1012x-2-1012y01234z-2-1012x-2-101201234004 10.0 pointsUse a table of numerical values of f (x, y)for (x, y) near the origin to make a conjec-ture abo ut the value of the limit of f(x, y) as(x, y) → ( 0, 0).f(x, y) =x2y3+ x3y2− 93 − xy.1. Cannot determine the value from thegiven information.2. −3 correct3. −94. 35. 9Explanation:005 10.0 pointsDetermine fx− fywhenf(x, y) = 3x2+ 2xy − 3y2− x − 3y .1. fx− fy= 8x − 4y − 42. fx− fy= 8x + 8y − 43. fx− fy= 4x + 8y + 2 correct4. fx− fy= 4x + 8y − 4abdallah (haa2348) – Homework 10 Due by 11:59pm on Sun 5/3 – reyes – (52535) 45. fx− fy= 8x − 4y + 26. fx− fy= 4x − 4y + 2Explanation:After differentiation we see thatfx= 6x + 2y − 1 , fy= 2x − 6y − 3 .Consequently,fx− fy= 4x + 8y + 2 .006 10.0 pointsDetermine fx+ fywhenf(x, y) = x2− 3xy + 3y2+ 3x − y .1. fx+ fy= −x + 3y + 2 correct2. fx+ fy= 5x − 9y + 43. fx+ fy= −x − 9y + 24. fx+ fy= −x + 3y + 45. fx+ fy= 5x + 3y + 46. fx+ fy= 5x − 9y + 2Explanation:After differentiation we see thatfx= 2x − 3y + 3 , fy= −3x + 6y − 1 .Consequently,fx+ fy= −x + 3y + 2 .007 10.0 pointsDetermine whether the parti a l derivativesfx, fyof f ar e positive, negative or zero at thepoint P on the gra ph of f shown inPxzy1. fx> 0 , fy= 02. fx< 0 , fy< 03. fx= 0 , fy> 04. fx< 0 , fy= 0 correct5. fx= 0 , fy< 06. fx< 0 , fy> 07. fx> 0 , fy> 08. fx= 0 , fy= 0Explanation:The value of fxat P is the slope of thetangent line to graph of f at P in the x-direction, while fyis the slope of the tangentline in the y-direction. Thus the sign of fxindicates whether f is increasing or decreasingin the x-direction, or w hether the tangent linein that direction at P is horizontal.Similarly, the value of fyat P is the slopeof the tangent line at P in the y-direction,and so the sign of fyindicates whether f isincreasing or decreasing in the y-direction, orwhether the tangent line in that direction atP is horizontal.From the graph it thus follows that at Pfx< 0 , fy= 0 .abdallah (haa2348) – Homework 10 Due by 11:59pm on Sun 5/3 – reyes – (52535) 5keywords: surface, partial derivative, first or-der partial derivative, graphical interpreta-tion008 10.0 pointsDetermine fxwhenf(x , y) = (x2+ y)(2y2− x) .1. fx= 2y + 2xy2+ 3x22. fx= 4xy2+ y − 3x23. fx= 2xy2− 2y + 3x24. fx= 4xy2− y − 3x2correct5. fx= y − 4xy2− 3x26. fx= 2y − 2xy2+ 3x2Explanation:From the Product Rule we see thatfx= 2x(2y2− x) − (x2+ y) .Consequently,fx= 4xy2− y − 3x2.009 10.0 pointsDetermine fxwhenf(x, y) =2x + yx + 2y.1. fx= −3x(x + 2y)22. fx=5y(x + 2y)23. fx=3y(x + 2y)2correct4. fx= −5x(x + 2y)25. fx= −4x(x + 2y)26. fx=4y(x + 2y)2Explanation:From the Quotient Rule we see thatfx=2(x + 2y) − (2x + y)(x + 2y)2.Consequently,fx=3y(x + 2y)2.010 10.0 pointsDetermine fxwhenf(x, y) = x sin(2y − x) − cos(2y − x) .1. fx= −cos(2y − x) − x sin(2 y − x)2. fx= x sin(2y − x)3. fx= −x cos(2 y − x) correct4. fx= −2 sin(2y − x) − x cos( 2 y − x)5. fx= 2 sin(2y − x) − x cos(2y − x)6. fx= −x sin( 2y − x)7. fx= x cos(2y − x)8. fx= x cos(2y − x) − sin(2y − x)Explanation:From the Product Rule we see thatfx= sin(2y −x) −x cos(2y −x) −sin(2y −x) .Consequently,fx= −x cos(2y − x) .abdallah (haa2348) – Homework 10 Due by 11:59pm on Sun 5/3 – reyes – (52535) 6011 10.0 pointsDetermine fxwhenf(x, y) = x sin(x + y) − cos(x + y) .1. fx= −x sin(x + y)2. fx= 2x cos(x + y)3. fx= 2 sin(x + y) − x cos(x + y)4. fx= x cos(x + y)5. fx= 2 sin(x+ y) + x cos(x + y) correct6. fx= 2 cos(x + y) − x sin(x + y)7. fx= 2 cos(x + y) + x sin(x + y)8. fx= −2x sin(x + y)Explanation:From the Product Rule we see thatfx= sin(x + y) + x cos(x + y) + sin(x + y) .Consequently,fx= 2

View Full Document