DOC PREVIEW
UT M 408D - HW01-solutions

This preview shows page 1-2-3-4 out of 11 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

tapia (jat4858) – HW01 – clark – (52990) 1This print-out should have 22 questions.Multiple-choice questions may continue o nthe next column or page – find all choicesbefore answering.001 10.0 pointsEvaluate the integralI =Z6eln(x)x2dx .1. I =6e−12ln(6) + 12. I =6e−12ln(6) − 13. I =2e−16ln(6) − 14. I =2e−16ln(6) + 1correct5. I =6e+12ln(6) + 16. I =2e+16ln(6) + 1Explanation:After integration by parts,I = −h1xln(x)i6e+Z6e1x2dx .ThusI = −h1xln(x) +1xi6e.Consequentl y,I =2e−16ln(6) + 1.002 10.0 pointsDetermine the integralI =Z4x(ln(x))2dx .1. I = 4x2(ln(x))2+ ln(x) +12+ C2. I = 2x2(ln(x))2+ ln(x) +12+ C3. I = 4x2(ln(x))2− ln(x) +12+ C4. I = 4x2(ln(x))2+ ln(x) −12+ C5. I = 2x2(ln(x))2− ln(x) +12+ Ccorrect6. I = 2x2(ln(x))2− ln(x) −12+ CExplanation:After integration by parts,Zx(ln(x))2dx =12x2(ln(x))2−Zx21xln(x) dx=12x2(ln(x))2−Zx ln(x) dx.But after integration by parts once again,Zx ln(x) dx =12x2ln(x) −12Zx21xdx=12x2ln(x) −12Zx dx=12x2ln(x) −14x2+ C.ThusZx(ln(x))2dx=12x2(ln(x))2−12x2ln(x) +14x2+ C.Consequentl y,I = 2x2(ln(x))2− ln(x) +12+ C.keywords: integration by parts, log function003 10.0 pointstapia (jat4858) – HW01 – clark – (52990) 2Evaluate the definite integralI =Z103e4√xdx .1. I =323e4+ 12. I =383e4+ 1correct3. I =383e4− 14. I =324e4− 15. I =324e4+ 16. I =384e4− 1Explanation:First we use the substitut ion u =√x toeliminate the square root in the integrand.For then12√xdx = du,so dx = 2√xdu = 2u du. ThusI = 6Z10u e4udu.This last integra l we evaluate using integra-tion by parts. HenceI =h32ue4ui10−32Z10e4udu=h32ue4u−38e4ui10,and soI =383e4+ 1.004 10.0 pointsEvaluate the integralI =Zπ/40(4 x − 5) cos 2x dx .1. I =12π + 32. I = π − 73. I =12π −72correct4. I = π + 35. I =12π +32Explanation:After integration by parts,I =12h(4 x − 5) sin 2xiπ/40−12Zπ/40sin 2xddx(4 x − 5) dx=12π −52− 2Zπ/40sin 2x dx=12π −52+ [cos 2x]π/40.Consequentl y,I =12π −72.005 10.0 pointsEvaluate the integralI =Zπ0e−xcos x dx .1. I = eπ− 12. I = −12(eπ+ 1)3. I =12(1 − e−π)4. I = 1 − e−πtapia (jat4858) – HW01 – clark – (52990) 35. I =12(e−π+ 1) correct6. I =12(eπ+ 1)7. I = e−π+ 18. I = eπ+ 1Explanation:After integration by parts,I = −he−xcos xiπ0−Zπ0e−xsin x dx= e−π+ 1 −Zπ0e−xsin x dx .To evaluate this last integral we integrate byparts once again. For thenZπ0e−xsin x dx = −he−xsin xiπ0+Zπ0e−xcos x dx = 0 + I ,in which caseI = e−π+ 1 − I .Consequentl y,I =12(e−π+ 1).006 10.0 pointsDetermine the integralI =Zx(2 sec2x + tan2x) dx .1. I = 4(tan x −ln |sec x|) − x + C2. I = 4(tan x + ln |sec x|) − x2+ C3. I = 3(x tan x − ln |sec x| ) −12x2+ Ccorrect4. I = 3( ta n x − ln |sec x|) − x + C5. I = 3(x tan x + ln |sec x|) −12x2+ C6. I = 4(x tan x + ln |sec x|) −12x + CExplanation:Astan2x = sec2x − 1 ,the integrand can be rewritten asx(2 sec2x + (sec2x − 1)) = x(3 sec2x − 1) .ThusI =Zx(3 sec2x − 1), dx= 3Zx sec2x dx −12x2.On the other hand,ddx(tan x) = sec2x ,so integration by parts is suggested for evalu-ating this last integral, since then3Zx sec2x dx = 3(x tan x −Ztan x dx) .ButZtan x dx = ln |sec x| + C .Consequentl y,I = 3(x tan x − ln |sec x|) −12x2+ Cwith C an arbitrar y constant.keywords: integration by parts, trig function007 10.0 pointsThe base of a solid S is the region enclosedby the graphs ofy =pln(x), x = e, y = 0 .tapia (jat4858) – HW01 – clark – (52990) 4If the cross sections of S perpendicular to thex-axis are squares, determine the volume, V ,of S.1. V =23cu. units2. V = 1 cu. unit correct3. V = 2(e3− 1) cu. units4. V =12cu. units5. V =13(e3− 1) cu. unitsExplanation:The base of the solid S is given by1 21eSince the square cross-section has side-lengthy, its area is given by A(y) = y2= ln(x).ThusV =Ze1A(y) dy=Ze1y2dx =Ze1ln(x) dx .After Integration by Parts, therefore,V =hx ln(x) − xie1.Consequentl y,volume = e − (e − 1) = 1 cu. unit .008 10.0 pointsDetermine the integralI =Z(2 sin(θ) + sin3(θ)) dθ .1. I = 3 cos(θ) +13cos3(θ) + C2. I = −3 cos(θ) +13cos3(θ) + C correct3. I = 3 cos(θ) −13sin3(θ) + C4. I = −3 cos(θ) −13cos3(θ) + C5. I = −3 cos(θ) −13sin3(θ) + C6. I = 3 cos(θ) +13sin3(θ) + CExplanation:After simplification, we see that2 sin(θ) + sin3(θ) = sin(θ)(2 + sin2(θ)) .On the other hand,sin2(θ) = 1 − cos2(θ) .Thus the integrand can be rewritten assin(θ)(2 + (1 − cos2(θ)))= sin(θ)(3 − cos2(θ)) .As this is now of the form sin(θ) f(cos(θ)), thesubsitution x = cos(θ) is suggested. For thendx = −sin(θ) dθ ,in which caseI = −Z(3 − x2) dx = −3x −13x3+ C .Consequentl y,I = −3 cos(θ) +13cos3(θ) + Cwith C an arbitrar y constant.keywords: trig identity, trig function, integraltapia (jat4858) – HW01 – clark – (52990) 5009 10.0 pointsThe shaded region inπ2π3π2xyis bounded by the graph off(x) = 5 cos3(x)on [0, 3π/2] and the the x-axis. Find the areaof this region.1. area = 1 5π2. area = 1 0π3. area =1524. area = 1 0 correct5. area =152π6. area = 1 5Explanation:The area of the shaded region is given byI =Z3π/20|5 cos3(x)|dxwhich as the graph shows can in turn be writ-ten asI =Zπ/205 cos3(x) dx−Z3π/2π/25 cos3(x) dx .Sincecos2(x) = 1 − sin2(x) ,we thus see thatI =nZπ/20−Z3π/2π/2o5 cos(x)(1−sin2(x)) dx .To evaluate these integrals, set u = sin(x).For thendu = cos(x) dx ,in which caseZπ/205 cos(x)(1 − sin2(x)) dx= 5Z10(1 − u2) du= 5hu −13u3i10=103,whileZ3π/2π/25 cos(x)(1 − sin2(x)) dx= 5Z−11(1 − u2) du= 5hu −13u3i−11= −203.Consequentl y, the shaded region hasarea = 10 .keywords:010 10.0 pointsEvaluate the integralI =Zπ0p1 + sin(θ) dθ .1. I =√3 − 12. I = 3 −√33. I = 1tapia (jat4858) – HW01 – clark – (52990) 64. I =√3 + 15. I = 4 correct6. I = 2Explanation:By the double angle formula,sin(2x) = 2 sin(x) cos(x) ,while by the Pythagorean ident ity,cos2(x) + sin2(x) = 1 .Thus1 + sin(2x) = cos2(x) + 2 sin(x) cos(x) + sin2(x)= (cos(x) + sin(x))2.Taking x = θ/2, we thus see thatp1 + sin(θ) =q(cos(θ/2) + sin(θ/2))2= cos(θ/2) + sin(θ/2)whenevercos(θ/2) + sin(θ/2) ≥ 0 ,hence for 0 ≤ θ ≤ π. ThusI =Zπ0cosθ2+ sinθ2dθ= 2hsinθ2− cosθ2iπ0.Consequentl y,I = 4 .011 10.0 pointsDetermine the integralI


View Full Document

UT M 408D - HW01-solutions

Download HW01-solutions
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view HW01-solutions and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view HW01-solutions 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?