DOC PREVIEW
UIUC STAT 400 - 400Discussion08

This preview shows page 1-2-3 out of 9 pages.

Save
View full document
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

STAT 400 1 Spring 2015 Discussion 8 Suppose that the random variables X and Y have joint p d f f x y given by f x y C x 2 y 0 x y x y 2 zero elsewhere a Sketch the support of X Y That is sketch 0 x y x y 2 b What must the value of C be so that f x y is a valid joint p d f c Find P Y 2 X d Find P X Y 1 e Find the marginal probability density function for X f Find the marginal probability density function for Y Hint Consider two cases 0 y 1 and 1 y 2 g Find E X h Find E Y i Find E X Y 2 Let X and Y have the joint probability density function f x y C 0 x 1 0 y x 1 x zero elsewhere That is suppose that X Y is uniformly distributed over the region defined by 0 x 1 0 y x 1 x a Find the value of C so that f x y is a valid joint p d f b Find the marginal probability density function of X f X x c Find the marginal probability density function of Y f Y y d Are X and Y independent If not find Cov X Y 3 Every month the government of Neverland spends X million dollars purchasing guns and Y million dollars purchasing butter Assume X and Y are independent X has a Normal distribution with mean 265 and standard deviation 40 in millions of dollars and Y has a Normal distribution with mean 170 and standard deviation 30 in millions of dollars a Find the probability that the government of Neverland spends more on guns than on butter during a given month That is find P X Y b Find the probability that the government of Neverland spends more on guns than twice the amount it spends on butter during a given month That is find P X 2 Y c Find the probability that the government of Neverland exceeds the 500 million spending limit during a given month That is find P X Y 500 1 Suppose that the random variables X and Y have joint p d f f x y given by f x y C x 2 y 0 x y x y 2 Sketch the support of X Y a That is sketch 0 x y x y 2 What must the value of C be b so that f x y is a valid joint p d f Must have f x y dx dy 1 1 2 x C x 2 y dy dx 0 x 1 C 2 2 y 2 x x y dx y x 2 0 1 C 2 x 2 0 2 C x 1 2 x 2 2 x 2 dx 2 C x 3 dx 0 C 2C 3 C 4 1 1 x x 6 2 3 0 C 6 zero elsewhere Find P Y 2 X c x y 2 2 4 y 3 3 x y 2x 2 3 2 x 2 1 6 x y dy dx 0 2x 2 3 1 0 2 3 1 3 x 2 y 2 yy 22 xx dx 3 x 2 2 x 2 4 x 2 dx 0 2 3 1 12 x 2 12 x 3 9 x 4 dx 0 3 4 9 2 9 2 2 2 3 1 4x3 3x4 x5 1 4 3 5 3 5 3 3 0 OR 1 2 x 2 2 6 6 x x y y dy dy dx dx 2 3 x 0 x 2 3 2 x OR 4 3 2 y y 2 2 6 x y dx dy 6 x y dx dy 1 y 2 0 y 2 1 OR 2 2 y y 2 2 2 6 x y dx dy 6 x y dx dy 0 0 4 3 0 4 3 1 5 87 135 d Find P X Y 1 0 5 1 x 6 x 2 y dy dx 0 x 0 5 0 3 x 2 y 2 y y 1 x x dx 2 2 2 3 x 1 x x dx 0 5 0 3 x 0 5 2 6 x 3 dx 0 3 0 5 x3 x4 2 0 3 3 1 1 2 2 2 e 4 1 3 1 0 03125 8 32 32 Find the marginal probability density function for X First X can only take values in 0 1 f X x f x y dy 3x2 2 x 2 6 x y dy x 3 x 2 y 2 y y 2 x x 2 x 2 x 2 12 x 2 12 x 3 12 x 2 1 x 0 x 1 f Find the marginal probability density function for Y Hint Consider two cases 0 y 1 and 1 y 2 First Y can only take values in 0 2 y 6 x 2 y dx 0 f Y y f x y dx 2 y 6 x 2 y dx 0 0 y 1 1 y 2 x y 2 x3 y x 0 x 2 y 3 2x y x 0 2y4 2 y 2 y 3 g x f X x dx 0 y 1 1 y 2 1 x 12 x 2 1 x dx 0 60 0 Find E Y y f Y y dy E Y i 1 y 2 Find E X E X h 0 y 1 1 0 y 2 y dy 4 2 y 2 y 2 y 3 dx 1 Find E X Y 1 2 x E X Y 22 2 x y 6 x y dy dx 35 0 x 1 11 16 15 3 15 2 Let X and Y have the joint probability density function 0 x 1 0 y x 1 x f x y C zero elsewhere That is suppose that X Y is uniformly distributed over the region defined by 0 x 1 0 y x 1 x a Find the value of C so that f x y is a valid joint p d f 1 x 1 x C dy dx 0 Must have 1 0 1 C x x 2 dx 0 b C 6 C 6 Find the marginal probability density function of X f X x x 1 x f X x 6 dy 6 x 1 x 0 0 x 1 c Find the marginal probability density function of Y f Y y y x 1 x x 1 x x 2 where x1 x2 fY y 6 dx x1 6x x2 x1 12 1 2 1 y 4 1 y 6 1 4y 4 x2 1 2 0 y 1 4 1 y 4 d Are X and Y independent If not find Cov X Y f x y f X x f Y y X and Y are NOT independent OR The support of X Y is NOT a …


View Full Document

UIUC STAT 400 - 400Discussion08

Documents in this Course
Variance

Variance

11 pages

Midterm

Midterm

8 pages

Lecture 1

Lecture 1

17 pages

chapter 2

chapter 2

43 pages

chapter 1

chapter 1

45 pages

400Hw01

400Hw01

3 pages

Load more
Download 400Discussion08
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view 400Discussion08 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view 400Discussion08 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?