DOC PREVIEW
UIUC STAT 400 - 400Ex4_1_1ans

This preview shows page 1-2-3 out of 10 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

STAT 400 Lecture AL1 Answers for 4.1, 4.4 (Part 1) Spring 2015 Dalpiaz Multivariate Distributions Let X and Y be two discrete random variables. The joint probability mass function p ( x, y ) is defined for each pair of numbers ( x, y ) by p ( x, y ) = P( X = x and Y = y ). Let A be any set consisting of pairs of ( x, y ) values. Then P( ( X, Y )  A ) =    yx Ayxp,, . Let X and Y be two continuous random variables. Then f ( x, y ) is the joint probability density function for X and Y if for any two-dimensional set A P( ( X, Y )  A ) =  Adydxyxf ,. 1. Consider the following joint probability distribution p ( x, y ) of two random variables X and Y: x \ y 0 1 2 1 0.15 0.10 0 2 0.25 0.30 0.20 a) Find P( X > Y ). P( X > Y ) = p ( 1, 0 ) + p ( 2, 0 ) + p ( 2, 1 ) = 0.15 + 0.25 + 0.30 = 0.70. b) Find P( X + Y = 2 ). P( X + Y = 2 ) = p ( 1, 1 ) + p ( 2, 0 ) = 0.10 + 0.25 = 0.35.The marginal probability mass functions of X and of Y are given by p X ( x ) =   yyxpall,, p Y ( y ) =   xyxpall,. The marginal probability density functions of X and of Y are given by f X ( x ) =   , dyyxf, f Y ( y ) =   , dxyxf. c) Find the (marginal) probability distributions p X ( x ) of X and p Y ( y ) of Y. y p Y ( y ) x p X ( x ) 0 0.40 1 0.25 1 0.40 2 0.75 2 0.2 If p ( x, y ) is the joint probability mass function of ( X, Y ) OR f ( x, y ) is the joint probability density function of ( X, Y ), then discrete continuous E ( g( X, Y ) ) =  x y yxpyxg all all),(),( E ( g( X, Y ) ) =   dydxyxfyxg ),(),( d) Find E ( X ), E ( Y ), E ( X + Y ), E ( X  Y ). E ( X ) = 1  0.25 + 2  0.75 = 1.75. E ( Y ) = 0  0.40 + 1  0.40 + 2  0.20 = 0.8. E ( X + Y ) = 1  0.15 + 2  0.25 + 2  0.10 + 3  0.30 + 3  0 + 4  0.20 = 2.55. OR E ( X + Y ) = E ( X ) + E ( Y ) = 1.75 + 0.8 = 2.55. E ( X  Y ) = 0  0.15 + 0  0.25 + 1  0.10 + 2  0.30 + 2  0 + 4  0.20 = 1.5.2. Alex is Nuts, Inc. markets cans of deluxe mixed nuts containing almonds, cashews, and peanuts. Suppose the net weight of each can is exactly 1 lb, but the weight contribution of each type of nut is random. Because the three weights sum to 1, a joint probability model for any two gives all necessary information about the weight of the third type. Let X = the weight of almonds in a selected can and Y = the weight of cashews. Then the region of positive density is D = { ( x , y ) : 0  x  1, 0  y  1, x + y  1 }. Let the joint probability density function for ( X , Y ) be  otherwise01 ,10 ,10 60 ,2 yxyxyxyxf a) Verify that  yxf , is a legitimate probability density function. 1. f ( x , y )  0 for all ( x , y ).  2.   dydxyxf , =  10102 60 dxdyyxx =   1022 1 30 dxxx =  10432 30 60 30 dxxxx =  0 1 6 15 10 543 xxx  = 1.  b) Find the probability that the two types of nuts together make up less than 50% of the can. That is, find the probability P( X + Y < 0.50 ). ( Find the probability that peanuts make up over 50% of the can.) P( X + Y < 0.50 ) =  5.005.002 60 xyyx dxd =  5.0022 5.0 30 xxx d    0 5.0 6 5.7 5.2 30 30 5.7 5435.00432 xxxdxxxx  = 321 = 0.03125.c) Find the probability that there are more almonds than cashews in a can. That is, find the probability P( X > Y ). P( X > Y ) =  210 12 60 dydxyxyy =  210 12 3 20 dydxxyyy =   210 33 1 20 dyyyy =  210 3 2 2331 20 dxyyyy =  210 4 3 2 40606020 dxyyyy =  1611 021 5 4 3 2 8152010  yyyy = 0.6875. OR P( X > Y ) = 1 –  210 12 60 dxdyyxxx = 1 –  210 1 2 2 30 dxdyyxxx = 1 –   210 22 2 1 30 dxxxx = 1 –  210 2 21 30 dxxx = 1 –  210 3 2 6030 dxxx = 1 –  1611 021 4 3 1510  xx = 0.6875. OR P( X > Y ) =  210 02 60 dxdyyxx +  121 102 60 dxdyyxx = …d) Find the probability that there are at least twice as many cashews as there are almonds. That is, find the probability P( 2 X  Y ). P( Y ≥ 2 X ) =  3101 2 2 60 dxdyyxxx =      3102 22 2 1 30 dxxxx =  3104 3 2 9060 30 dxxxx =  3104 3 2 9060 30 dxxxx =  031543 18 15 10 xxx  = 2431881152710 = 91. e) Find the marginal probability density function for X. f X ( x ) =  xdyyx10 2 60 =  xdyyx10 2 2 30 =  2 2 1 30 xx , 0 < x < 1. f) Find the marginal probability density function for Y. f Y ( y ) =  ydxyx10 2 60 =  ydxxy10 2 3 20 =  3 1 20 yy , 0 < y < 1. g) Find E ( X ), E ( Y ), E ( X + Y ), E ( X  Y ). E ( X ) =  10 2 2 1 30 dxxxx =  10543 30 60 30 dxxxx =  0 1 5 12 5.7 654 xxx  = …


View Full Document

UIUC STAT 400 - 400Ex4_1_1ans

Documents in this Course
Variance

Variance

11 pages

Midterm

Midterm

8 pages

Lecture 1

Lecture 1

17 pages

chapter 2

chapter 2

43 pages

chapter 1

chapter 1

45 pages

400Hw01

400Hw01

3 pages

Load more
Download 400Ex4_1_1ans
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view 400Ex4_1_1ans and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view 400Ex4_1_1ans 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?