DOC PREVIEW
UIUC STAT 400 - 400Ex4_2

This preview shows page 1 out of 4 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 4 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 4 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

STAT 400 Lecture AL1 Examples for 4.2 Spring 2015 Dalpiaz 4.2 Covariance and Correlation Coefficient Covariance of X and Y  XY = Cov ( X , Y ) = E [ ( X –  X ) ( Y –  Y ) ] = E ( X Y ) –  X  Y (a) Cov ( X , X ) = Var ( X ); (b) Cov ( X , Y ) = Cov ( Y , X ); (c) Cov ( a X + b , Y ) = a Cov ( X , Y ); (d) Cov ( X + Y , W ) = Cov ( X , W ) + Cov ( Y , W ). Cov ( a X + b Y , c X + d Y ) = a c Var ( X ) + ( a d + b c ) Cov ( X , Y ) + b d Var ( Y ). Var ( a X + b Y ) = Cov ( a X + b Y , a X + b Y ) = a 2 Var ( X ) + 2 a b Cov ( X , Y ) + b 2 Var ( Y ). 0. Find in terms of  X2,  Y2, and  XY : a) Cov ( 2 X + 3 Y , X – 2 Y ), b) Var ( 2 X + 3 Y ), c) Var ( X – 2 Y ).Correlation coefficient of X and Y  XY = Y XXY σσσ =      , YVarXVarYXCov  =  YY XX σμσμ YXE (a) – 1   XY  1; (b)  XY is either + 1 or – 1 if and only if X and Y are linear functions of one another. If random variables X and Y are independent, then E ( g ( X )  h ( Y ) ) = E ( g ( X ) )  E ( h ( Y ) ).  Cov ( X, Y ) =  XY = 0, Corr ( X , Y ) =  XY = 0. 1. Consider the following joint probability distribution p ( x, y ) of two random variables X and Y: y Recall: E ( X ) = 1.75, E ( Y ) = 0.8, E ( X Y ) = 1.5. x 0 1 2 p X ( x ) 1 0.15 0.10 0 0.25 2 0.25 0.30 0.20 0.75 p Y ( y ) 0.40 0.40 0.20 1.00 Find Cov ( X , Y ) =  XY and Corr ( X , Y ) =  XY .2. Let the joint probability density function for ( X , Y ) be  otherwise01 ,10 ,10 60 ,2 yxyxyxyxf Find Cov ( X , Y ) =  XY and Corr ( X , Y ) =  XY . Recall: f X ( x ) =  2 2 1 30 xx , 0 < x < 1, E ( X ) = 21, f Y ( y ) =  3 1 20 yy , 0 < y < 1, E ( Y ) = 31, E ( X Y ) = 71. 3. Let the joint probability density function for ( X , Y ) be  otherwise010 ,10 ,yxyxyxf Find Cov ( X , Y ) =  XY and Corr ( X , Y ) =  XY . Recall: f X ( x ) = 21x, 0 < x < 1. f Y ( y ) = 21y, 0 < y < 1.4. Let the joint probability density function for ( X , Y ) be   otherwise00 ,101 12 ,2 yxxxyxfye Find Cov ( X , Y ) =  XY and Corr ( X , Y ) =  XY . Recall: f X ( x ) =   1 6 xx , 0 < x < 1. f Y ( y ) = ye2 2, y >


View Full Document

UIUC STAT 400 - 400Ex4_2

Documents in this Course
Variance

Variance

11 pages

Midterm

Midterm

8 pages

Lecture 1

Lecture 1

17 pages

chapter 2

chapter 2

43 pages

chapter 1

chapter 1

45 pages

400Hw01

400Hw01

3 pages

Load more
Download 400Ex4_2
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view 400Ex4_2 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view 400Ex4_2 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?