DOC PREVIEW
UIUC STAT 400 - 400Practice04

This preview shows page 1-2-21-22 out of 22 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

STAT 400 Lecture AL1 Practice Problems 4 Spring 2015 Dalpiaz 1. Let X and Y have the joint p.d.f. f X , Y ( x, y ) = C x 2 y 3, 0 < x < 1, 0 < y < x , zero elsewhere. a) What must the value of C be so that f X , Y ( x, y ) is a valid joint p.d.f.? b) Find P ( X + Y < 1 ). c) Let 0 < a < 1. Find P ( Y < a X ). d) Let a > 1. Find P ( Y < a X ). e) Let 0 < a < 1. Find P ( X Y < a ). f) Find f X ( x ). g) Find E ( X ). h) Find f Y ( y ). i) Find E ( Y ). j) Find E ( X Y ). k) Find Cov ( X, Y ). l) Are X and Y independent? 2. Let X and Y have the joint probability density function f X , Y ( x, y ) = x1, x > 1, 0 < y < x1, zero elsewhere. a) Find f X ( x ). b) Find E ( X ). c) Find f Y ( y ). d) Find E ( Y ). 3. Let X and Y have the joint probability density function f X , Y ( x, y ) = x1, 0 < x < 1, 0 < y < x, zero elsewhere. a) Find f X ( x ). b) Find E ( X ). c) Find f Y ( y ). d) Find E ( Y ). e) Find P ( X + Y ≥ 1 ). f) Find Cov ( X, Y ).4. Let X and Y be two random variables with joint p.d.f. f ( x, y ) = 64 x exp { – 4 y } = 64 yex4 −, 0 < x < y < ∞, zero elsewhere. a) Find P ( X 2 > Y ). b) Find the marginal p.d.f. f X ( x ) of X. c) Find the marginal p.d.f. f Y ( y ) of Y. d) Are X and Y independent? If not, find Cov ( X, Y ) and ρ = Corr ( X, Y ). e) Let a > 1. Find P ( Y > a X ). f) Let a > 0. Find P ( X + Y < a ). 5. Let the joint probability mass function of X and Y be defined by p ( x, y ) = 32yx +, x = 1, 2, y = 1, 2, 3, 4. a) Find P ( Y > X ). b) Find p X ( x ), the marginal p.m.f. of X. c) Find p Y ( y ), the marginal p.m.f. of Y. d) Are X and Y independent? If not, find Cov ( X, Y ). 6. Let the joint probability mass function of X and Y be defined by p ( x, y ) = 30yx⋅, x = 1, 2, y = 1, 2, 3, 4. a) Find P ( Y > X ). b) Find p X ( x ), the marginal p.m.f. of X. c) Find p Y ( y ), the marginal p.m.f. of Y. d) Are X and Y independent? If not, find Cov ( X, Y ).7. Suppose the joint probability density function of ( X , Y ) is ()≤≤≤=otherwise010 ,2xyyxCyxf a) Find the value of C that would make ( )yxf , a valid probability density function. b) Find the marginal probability density function of X, f X ( x ). c) Find the marginal probability density function of Y, f Y ( y ). d) Find P ( X > 2 Y ). e) Find P ( X + Y < 1 ). f) Are X and Y independent? If not, find Cov ( X, Y ). 8. Let X and Y have the joint probability density function f ( x, y ) = C x, 0 ≤ x ≤ 1, 0 ≤ y ≤ x ( 1 – x ), zero elsewhere. a) Find the value of C so that f ( x, y ) is a valid joint p.d.f. b) Find f X ( x ). c) Find E ( X ). d) Find f Y ( y ). e) Find E ( Y ). f) Are X and Y independent? 9. Suppose that ( X, Y ) is uniformly distributed over the region defined by x ≥ 0, y ≥ 0, x 2 + y 2 ≤ 1. That is, f ( x, y ) = C, x ≥ 0, y ≥ 0, x 2 + y 2 ≤ 1, zero elsewhere. a) What is the joint probability density function of X and Y ? That is, find the value of C so that f ( x, y ) is a valid joint p.d.f. b) Find P ( Y > 2 X ). c) Find P ( X + Y < 1 ). d) Are X and Y independent?1. Let X and Y have the joint p.d.f. f X , Y ( x, y ) = C x 2 y 3, 0 < x < 1, 0 < y < x , zero elsewhere. a) What must the value of C be so that f X , Y ( x, y ) is a valid joint p.d.f.? ∫ ∫10 03 2 dxdyyxxC = ∫104 4 dxxC = 20C = 1. ⇒ C = 20. b) Find P ( X + Y < 1 ). y = x and y = 1 – x x = y 2 and x = 1 – y ⇒ y = 215 −. P ( X + Y < 1 ) = ∫ ∫−−215013 2 20 2 dydxyxyy = ( )∫−−−21509 3 3 3201 320 dyyyy = ∫−−−+−21509 6 5 4 3 3203202020 320 dyyyyyy= 021510 7 6 5 4 3221203104 35 −−−+− yyyyy ≈ 0.030022. OR y < x and y = 1 – x ⇒ x = 2532151215 2−=−−=−. P ( X + Y < 1 ) = ∫ ∫−−−125313 2 20 1 dxdyyxxx = ( )( )∫−−−−125342 4 1 55 1 dxxxx = ( )∫−−+−+−−12536 5 4 3 2 5202520 5 1 dyxxxxx = 25317 6 5 4 3 7531055 35 1−−+−+−− xxxxx ≈ 0.030022. c) Let 0 < a < 1. Find P ( Y < a X ). P ( Y < a X ) = ∫ ∫10 03 2 20 dxdyyxxa = ∫106 4 5 dxxa = 4 75a.d) Let a > 1. Find P ( Y < a X ). y = x and y = a x ⇒ x = 2 1a, y = a1. P ( Y < a X ) = ∫ ∫−aayydydxyx 103 2 20 12 = ∫−−adyyay 109 36 320 3 20 1 = 10 721a−. P ( Y < a X ) = ∫∫−2 103 2 20 1axxadxdyyx = ()∫−−2 1064 4 5 5 1adxxax = 10 721a−. e) Let 0 < a < 1. Find P …


View Full Document

UIUC STAT 400 - 400Practice04

Documents in this Course
Variance

Variance

11 pages

Midterm

Midterm

8 pages

Lecture 1

Lecture 1

17 pages

chapter 2

chapter 2

43 pages

chapter 1

chapter 1

45 pages

400Hw01

400Hw01

3 pages

Load more
Download 400Practice04
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view 400Practice04 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view 400Practice04 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?