DOC PREVIEW
UIUC STAT 400 - 400Ex6_4_1ans

This preview shows page 1-2-3 out of 10 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

STAT 400 Lecture AL1 Answers for 6.4, Part 1 Spring 2015 Dalpiaz p.m.f. or p.d.f. f ( x ;  ),   .  – parameter space. 1. Suppose  = { 1, 2, 3 } and the p.m.f. f ( x ;  ) is  = 1: f ( 1 ; 1 ) = 0.6, f ( 2 ; 1 ) = 0.1, f ( 3 ; 1 ) = 0.1, f ( 4 ; 1 ) = 0.2.  = 2: f ( 1 ; 2 ) = 0.2, f ( 2 ; 2 ) = 0.3, f ( 3 ; 2 ) = 0.3, f ( 4 ; 2 ) = 0.2.  = 3: f ( 1 ; 3 ) = 0.3, f ( 2 ; 3 ) = 0.4, f ( 3 ; 3 ) = 0.2, f ( 4 ; 3 ) = 0.1. What is the maximum likelihood estimate of  ( based on only one observation of X ) if … a) X = 1; f ( 1 ; 1 ) = 0.6  f ( 1 ; 2 ) = 0.2  θˆ = 1. f ( 1 ; 3 ) = 0.3 b) X = 2; f ( 2 ; 1 ) = 0.1 f ( 2 ; 2 ) = 0.3  θˆ = 3. f ( 2 ; 3 ) = 0.4  c) X = 3; f ( 3 ; 1 ) = 0.1 f ( 3 ; 2 ) = 0.3   θˆ = 2. f ( 3 ; 3 ) = 0.2 d) X = 4. f ( 4 ; 1 ) = 0.2  f ( 4 ; 2 ) = 0.2   θˆ = 1 or 2. f ( 4 ; 3 ) = 0.1 (maximum likelihood estimate may not be unique)Likelihood function: L (  ) = L (  ; x 1 , x 2 , … , x n ) = ni 1f ( x i ;  ) = f ( x 1 ;  )  …  f ( x n ;  ) It is often easier to consider ln L (  ) = ni 1ln f ( x i ;  ). Maximum Likelihood Estimator: θˆ = arg max L (  ) = arg max ln L (  ). Method of Moments: E ( X ) = g (  ). Set X = g ( θ~ ). Solve for θ~. 0. Consider a single observation X of a Binomial random variable with n trials and probability of “success” p. That is, knkppkCnk 1 XP )( )(, k = 0, 1, … , n. a) Obtain the method of moments estimator of p, p~. Binomial: E ( X ) = n p X = np~  npX~. b) Obtain the maximum likelihood estimator of p, pˆ. XX 1 XL )( )(nppCnp  )(lnlnlnln 1 X XXL )( pnpCnp      11X1Xln X XXXL )(pppnppnpnppppppdd )ˆ( L ln ppdd = 0  npXˆ.2. Let X 1 , X 2 , … , X n be a random sample of size n from a Poisson distribution with mean ,  > 0. That is, P ( X = k ) = !λ λ kek , k = 0, 1, 2, 3, … . a) Obtain the method of moments estimator of , λ~. E ( X ) =   Xλ~ b) Obtain the maximum likelihood estimator of , ˆ.   niiniieif1X1 Xλ ; XL!λλλ .    niiniin1 1 !λλλ XlnlnXLln.  nniidd1 X1Lln λλλ = 0.  XX1 λˆnnii. Let θˆ be the maximum likelihood estimate (m.l.e.) of . Then the m.l.e. of any function h (  ) is h ( θˆ ). ( The Invariance Principle ) c) Obtain the maximum likelihood estimator of P ( X = 2 ). P ( X = 2 ) = h (  ) = !λ 22λ e Xλˆ h (λˆ) = ! X22 X e.3. Let X 1 , X 2 , … , X n be a random sample of size n from a Geometric distribution with probability of “success” p, 0 < p < 1. That is, P ( X = k ) = ( 1 – p ) k – 1 p, k = 1, 2, 3, … . a) Obtain the method of moments estimator of p, p~. E ( X ) = 1/p . p~ 1X  so niinp1 X X 1~. b) Obtain the maximum likelihood estimator of p , pˆ. nnpppnii 1 L X1 )()( pnpnpnii 1 XL ln)(lnln 1 )(    1Xln 1XL 1 1 )(pppnpnppniiniipndd )ˆ( L ln ppdd = 0  X 1X 1 ˆniinp. pˆ = p~ equals the number of successes, n, divided by the number of Bernoulli trials, nii1 X; c)* Is pˆ an unbiased estimator for p? Since g ( x ) = 1/x , x  1, is strictly convex, and X is not a constant random variable, by Jensen’s Inequality, E (pˆ) = E ( g (X) ) > g ( E (X) ) = g ( 1/p ) = p. pˆ is NOT an unbiased estimator for p.4. Let X 1 , X 2 , … , X n be a random sample of size n from the distribution with probability density function f ( x ;  ) = otherwise010θ1 θ θ1xx 0 <  < . a) Obtain the method of moments estimator of , θ~.    10θ θ1X θ1 θ X E ; dxxxdxxfx. = θ11 01 1 θ 11θ1 θ11 θ 110θ 1 xdxx. θ11 X. XX1 1X1 θ~. b) Obtain the maximum likelihood estimator of , θˆ. Likelihood function: L() =  θ θ1 11X X θ1 θ X ;ninniiif. ln L() = niiniinn11 Xln 1θ1θ Xln θθ1θ lnln.   niidd n12 Xln θˆ 1 θˆ θˆL θ ln = 0.  niin1 Xln 1 θˆ.c) Suppose n = 3, and x 1 = 0.2, x 2 = 0.3, x 3 = 0.5. Compute the values of the method of moments estimate and the maximum likelihood estimate for . 3135.03.02.0 X . 31311XX1 θ~ = 2.   5.0ln3.0ln2.0ln31Xln 1 θˆ1  niin  1.16885. 5. Let X 1 , X 2 , … , X n be a random sample of size n from N (  1 ,  2 ), where  = { (  1 ,  2 ) : –  <  1 < , 0 <  2 <  }. That is, here we let  1 =  and  2 =  2 . a) Obtain the maximum likelihood estimator of  1 , 1 θˆ, and of  2 , 2 θˆ. L (  1 ,  2 ) =  nii12212 θθθπ 2Xexp 21 =  21212 θθθπ 2Xexp 21 nini, (  1 ,  2 )  . ln L (  1 ,  2 ) =   21212 θθθπln 2X 2 2 niin.The partial derivatives with respect …


View Full Document

UIUC STAT 400 - 400Ex6_4_1ans

Documents in this Course
Variance

Variance

11 pages

Midterm

Midterm

8 pages

Lecture 1

Lecture 1

17 pages

chapter 2

chapter 2

43 pages

chapter 1

chapter 1

45 pages

400Hw01

400Hw01

3 pages

Load more
Download 400Ex6_4_1ans
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view 400Ex6_4_1ans and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view 400Ex6_4_1ans 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?