Summer 2007 EE100 EE43 Lab 5 EECS 100 43 Lab 5 Nonlinear Op Amp Circuits 1 Objective In this lab you will learn about how to build oscillator circuits 2 Equipment a Breadboard b Wire cutters c Wires d Oscilloscope e Function Generator f Power supply g 1k resistor x 2 h 10k resistor x 2 i 8 2 mH inductor i LMC6482 op amp j Various connectors for power supply function generator and oscilloscope 3 Theory a Circuit Figure 1 shows the circuit that you will build in this lab To get the 5k resistors use two 10k resistors in parallel You will build the circuit in lab so MAKE SURE THAT YOU FINISH YOUR PRELAB BEFORE COMING TO LAB Figure 2 has the LMC6482 pinout for reference Figure 1 Inductor based op amp oscillator University of California Berkeley Department of EECS Summer 2007 EE100 EE43 Lab 5 Figure 2 Page 1 from the LMC6482 datasheet Derive the driving point plot for the circuit shown in figure 1 task 1 of your prelab Build and simulate the circuit in MultiSim task 2 of your prelab University of California Berkeley Department of EECS Summer 2007 EE100 EE43 Lab 5 b LABVIEW scope capture You will use LABVIEW to printout a screenshot of your oscilloscope waveform and attach it to your lab report Go through the Getting Started with LABVIEW document available on the EE100 homepage under handouts You don t have to master LABVIEW inside out Just get an idea of what the program does Here are the steps for printing the scope screen using LABVIEW 1 Download the HP54645 library from the EE100 lab homepage There is a VI link next to Lab 5 under Lab Documents on the EE100 lab homepage Download this VI to your U network drive NOTE IF YOU SAVE ANYTHING ON YOUR DESKTOP IT WILL BE ERASED ONCE YOU LOG OFF 2 LABVIEW communicates with your instruments using the GPIB bus General Purpose Input Output bus The first thing you need to do is figure out the address of your oscilloscope on the GPIB bus To do this a Turn on the oscilloscope Measurement and Automation MAX b Double click on the icon on your desktop Figure 3 will pop up Figure 3 MAX main window c Left Click on the next to d Left Click on Figure 4 will pop up University of California Berkeley Department of EECS Summer 2007 EE100 EE43 Lab 5 Figure 4 GPIB instrument addresses e Depending on the number of instruments you have switched on MAX will display their addresses Left Click to make sure the address displayed by MAX is correct NOTE DOWN THE ADDRESS OF YOUR OSCILLOSCOPE THE HEWLETT PACKARD 54645D f Close MAX 3 Select Start Programs National Instruments LabVIEW 8 2 LabVIEW to start LABVIEW Figure 5 will pop up University of California Berkeley Department of EECS Summer 2007 EE100 EE43 Lab 5 Figure 5 LabVIEW startup screen 4 Left Click 5 Navigate to the HP54645 folder you downloaded Double click on the folder and double click on the Hp54645 library and then Left Click OK Figure 6 should 6 Left Click on pop up University of California Berkeley Department of EECS Summer 2007 EE100 EE43 Lab 5 Figure 6 LABVIEW scope interface 7 MAKE SURE THAT THE CORRECT GPIB ADDRESS APPEARS UNDER RESOURCE NAME ON YOUR VI 8 MAKE SURE YOUR CIRCUIT IS POWERED UP AND SCOPE PROBE A1 IS CONNECTED TO YOUR CIRCUIT In this case connect probe A1 to the output of your op amp 9 Left Click the Run icon LABVIEW will capture the scope data 10 To print the screen Left Click File and then Left Click Print 11 You can keep the defaults Left Click to go through the screens to make Once you get to the Page Setup screen figure 7 Left Click sure that the output is what you want 12 On the last screen Left Click to send output to the 140 Cory printer TURN IN A COPY OF YOUR SCREEN SHOT WITH YOUR LAB REPORT University of California Berkeley Department of EECS Summer 2007 EE100 EE43 Lab 5 Figure 7 LABVIEW page setup screen University of California Berkeley Department of EECS Summer 2007 EE100 EE43 4 PRELAB Lab 5 NAME SECTION Please turn in INDIVIDUAL COPIES of the prelab They are due 10 MINUTES after start of lab NO EXCEPTIONS a TASK 1 Draw the driving point plot below for the circuit given in figure 1 Justify your driving point plot by showing the derivation b TASK 2 Build and simulate the circuit in figure 1 from MultiSim c TASK 3 Go through the Getting Started with LABVIEW document available on the EE100 homepage under handouts PRELAB COMPLETE TA CHECKOFF University of California Berkeley Department of EECS Summer 2007 EE100 EE43 5 REPORT Lab 5 NAME S SECTION a TASK 1 Build the circuit from prelab task 2 on the breadboard Use the oscilloscope cursor keys to measure the frequency of oscillation record it in table 1 and compare to the theory and simulation Parameter Frequency Theory Simulation Experiment error Table 1 Frequency measurements b TASK 2 Printout a screenshot of your LABVIEW scope vi and attach it to your lab report refer to the Theory section part b LABVIEW scope capture for instructions TURN IN ONE REPORT PER GROUP AT THE END OF YOUR LAB SESSION THERE IS NO TAKE HOME REPORT 6 REVISION HISTORY Date Author Spring 2007 Bharathwaj Muthuswamy University of California Berkeley Revision Comments Typed up source documentation organized lab report typed up solutions Department of EECS
View Full Document