DOC PREVIEW
UCSD BENG 280A - MRI Lecture 2

This preview shows page 1-2-3 out of 9 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1TT Liu, BE280A, UCSD Fall 2005Bioengineering 280APrinciples of Biomedical ImagingFall Quarter 2005MRI Lecture 2TT Liu, BE280A, UCSD Fall 2005GradientsSpins precess at the Larmor frequency, which isproportional to the local magnetic field. In a constantmagnetic field Bz=B0, all the spins precess at the samefrequency (ignoring chemical shift).Gradient coils are used to add a spatial variation to Bz suchthat Bz(x,y,z) = B0+Δ Bz(x,y,z) . Thus, spins at differentphysical locations will precess at different frequencies.TT Liu, BE280A, UCSD Fall 2005Simplified Drawing of Basic Instrumentation.Body lies on table encompassed bycoils for static field Bo, gradient fields (two of three shown), and radiofrequency field B1.MRI SystemImage, caption: copyright Nishimura, Fig. 3.152TT Liu, BE280A, UCSD Fall 2005Z Gradient CoilB(mT)LCredit: Buxton 2002TT Liu, BE280A, UCSD Fall 2005Gradient Fields€ Bz(x, y,z) = B0+∂Bz∂xx +∂Bz∂yy +∂Bz∂zz= B0+ Gxx + Gyy + Gzzz€ Gz=∂Bz∂z> 0€ Gy=∂Bz∂y> 0yTT Liu, BE280A, UCSD Fall 2005Interpretation∆Bz(x)=GxxSpins Precess atat γB0+ γGxx(faster)Spins Precess at γB0- γGxx(slower)xSpins Precess at γB03TT Liu, BE280A, UCSD Fall 2005Gradient Fields € Gxx + Gyy + Gzz =r G ⋅r r € r G ≡ Gxˆ i + Gyˆ j + Gzˆ k € Bz(r r ,t) = B0+r G (t) ⋅r r Define € r r ≡ xˆ i + yˆ j + zˆ k So that Also, let the gradient fields be a function of time. Thenthe z-directed magnetic field at each point in thevolume is given by :TT Liu, BE280A, UCSD Fall 2005Static Gradient Fields€ M(t) = M(0)e− jω0te−t /T2In a uniform magnetic field, the transverse magnetizationis given by:In the presence of non time-varying gradients we have € M(r r ) = M(r r ,0)e− jγBz(r r )e−t /T2(r r )= M(r r ,0)e− jγ(B0+r G ⋅r r )e−t /T2(r r )= M(r r ,0)e− jω0te− jγr G ⋅r r e−t /T2(r r )TT Liu, BE280A, UCSD Fall 2005Time-Varying Gradient FieldsIn the presence of time-varying gradients the frequencyas a function of space and time is: € ωr r ,t( )=γBz(r r ,t)=γB0+γr G (t)⋅r r =ω0+ Δω(r r ,t)4TT Liu, BE280A, UCSD Fall 2005PhasePhase = angle of the magnetization phasorFrequency = rate of change of angle (e.g. radians/sec)Phase = time integral of frequency € Δϕr r ,t( )= − Δω(r r ,τ)0t∫dτ= −γv G (r r ,τ) ⋅r r 0t∫dτ € ϕr r ,t( )= −ω(r r ,τ)0t∫dτ= −ω0t + Δϕr r ,t( )Where the incremental phase due to the gradients isTT Liu, BE280A, UCSD Fall 2005Phase with constant gradient € Δϕr r ,t3( )= − Δω(r r ,τ)0t3∫dτ € Δϕr r ,t2( )= − Δω(r r ,τ)0t2∫dτ= −Δω(r r )t2 if Δω is non - time varying. € Δϕr r ,t1( )= − Δω(r r ,τ)0t1∫dτTT Liu, BE280A, UCSD Fall 2005Phase with time-varying gradient5TT Liu, BE280A, UCSD Fall 2005Time-Varying Gradient FieldsThe transverse magnetization is then given by € M(r r ,t) = M(r r ,0)e−t /T2(r r )eϕ(r r ,t )= M(r r ,0)e−t /T2(r r )e− jω0texp − j Δωr r ,t( )dτot∫( )= M(r r ,0)e−t /T2(r r )e− jω0texp − jγr G (τ) ⋅r r dτot∫( )TT Liu, BE280A, UCSD Fall 2005Signal EquationSignal from a volume € sr(t) = M(r r , t)V∫dV= M( x, y,z,0)e−t /T2(r r )e− jω0texp − jγr G (τ) ⋅r r dτot∫( )z∫y∫x∫dxdydzFor now, consider signal from a slice along z and dropthe T2 term. Define € m(x, y) ≡ M(r r , t)z0−Δz / 2z0+Δz /2∫dz € sr(t) = m(x,y)e− jω0texp − jγr G (τ) ⋅r r dτot∫( )y∫x∫dxdyTo obtainTT Liu, BE280A, UCSD Fall 2005Signal EquationDemodulate the signal to obtain € s(t) = ejω0tsr(t)= m(x,y)exp − jγr G (τ) ⋅r r dτot∫( )y∫x∫dxdy= m(x,y)exp − jγGx(τ)x + Gy(τ)y[ ]dτot∫( )y∫x∫dxdy= m(x,y)exp − j2πkx(t) x + ky(t) y( )( )y∫x∫dxdy€ kx(t) =γ2πGx(τ)dτ0t∫ky(t) =γ2πGy(τ)dτ0t∫Where6TT Liu, BE280A, UCSD Fall 2005MR signal is Fourier Transform€ s(t) = m(x, y)exp − j2πkx(t)x + ky(t)y( )( )y∫x∫dxdy= M kx(t),ky(t)( )= F m(x, y)[ ]kx(t ),ky(t )TT Liu, BE280A, UCSD Fall 2005K-space€ s(t) = M kx(t),ky(t)( )= F m ( x, y)[ ]kx(t ),ky(t )€ kx(t) =γ2πGx(τ)dτ0t∫ky(t) =γ2πGy(τ)dτ0t∫At each point in time, the received signal is the Fouriertransform of the objectevaluated at the spatial frequencies:Thus, the gradients control our position in k-space. Thedesign of an MRI pulse sequence requires us toefficiently cover enough of k-space to form our image.TT Liu, BE280A, UCSD Fall 2005Interpretation∆x 2∆x-∆x-2∆x 0∆Bz(x)=Gxx€ exp − j2π18Δx      x      € exp − j2π28Δx      x      € exp − j2π08Δx      x      FasterSlower7TT Liu, BE280A, UCSD Fall 2005K-space trajectoryGx(t)t€ kx(t) =γ2πGx(τ)dτ0t∫t1t2kxky€ kx(t1)€ kx(t2)TT Liu, BE280A, UCSD Fall 2005K-space trajectoryGx(t)tt1t2ky€ kx(t1)€ kx(t2)Gy(t)t3t4kx€ ky(t4)€ ky(t3)TT Liu, BE280A, UCSD Fall 2005K-space trajectoryGx(t)tt1t2kyGy(t)kx8TT Liu, BE280A, UCSD Fall 2005Spin-WarpGx(t)t1kyGy(t)kxTT Liu, BE280A, UCSD Fall 2005Spin-WarpGx(t)t1kyGy(t)kxTT Liu, BE280A, UCSD Fall 2005Spin-Warp Pulse SequenceGx(t)kykxGy(t)RF9TT Liu, BE280A, UCSD Fall 2005UnitsSpatial frequencies (kx, ky) have units of 1/distance.Most commonly, 1/cmGradient strengths have units of (magneticfield)/distance. Most commonly G/cm or mT/mγ/(2π) has units of Hz/G or Hz/Tesla.€ kx(t) =γ2πGx(τ)dτ0t∫= [Hz / Gauss ][Gauss /cm][sec]= [1 / cm]TT Liu, BE280A, UCSD Fall 2005ExampleGx(t) = 1 Gauss/cmt€ kx(t2) =γ2πGx(τ)dτ0t∫= 4257Hz /G ⋅ 1G / cm ⋅0.235 ×10−3s=1 cm−1kxky€ kx(t1)€ kx(t2)t2 = 0.235ms1


View Full Document

UCSD BENG 280A - MRI Lecture 2

Documents in this Course
Sampling

Sampling

23 pages

Lecture 1

Lecture 1

10 pages

Lecture 1

Lecture 1

22 pages

X-Rays

X-Rays

20 pages

Spin

Spin

25 pages

Lecture 1

Lecture 1

10 pages

Load more
Download MRI Lecture 2
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view MRI Lecture 2 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view MRI Lecture 2 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?