DOC PREVIEW
UCSD BENG 280A - Ultrasound Lecture 2

This preview shows page 1-2-3-4 out of 12 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1TT Liu, BE280A, UCSD, Fall 2006Bioengineering 280APrinciples of Biomedical ImagingFall Quarter 2006Ultrasound Lecture 2TT Liu, BE280A, UCSD, Fall 2006Depth of Penetration! Assume system can handle L dB of loss, thenL = 20log10AzA0" # $ % & ' We also have the definition (= -1z20log10AzA0" # $ % & ' and the approximation(=(0fTotal range a wave can travel before attenuation L isz = L(0fDepth of penetration isdp=L2(0f2TT Liu, BE280A, UCSD, Fall 2006Depth of Penetration22041085133202401Depth ofPenetration(cm)Frequency(MHz)Assume L = 80 dB; α0= 1dB/cm/MHzTT Liu, BE280A, UCSD, Fall 2006Pulse Repetition and Frame Rate! Need to wait for echoes to return before transmitting new pulsePulse repetition interval isTR"2dpcPulse repetition rate isfR=1TRIf N pulses are required to form an image, then theframe rate isF =1NTR3TT Liu, BE280A, UCSD, Fall 2006Example! N = 256, L= 80dB, c = 1540m /s, "0= 1dB /cm / MHzWhat frequency should be used to achieve a frame rate of 15 frame/sec?TR=1FN= 0.26msTR#2dpc=L"0fcf #LacTR= 1.99MHzTT Liu, BE280A, UCSD, Fall 2006Huygen’s Principlehttp://www.fink.com/thesis/chapter2.htmlhttp://www.cbem.imperial.ac.uk/ardan/diff/hfw.html4TT Liu, BE280A, UCSD, Fall 2006Huygen’s PrincipleAnderson and Trahey 2000! Wavenumberk =2"#! Oliquity Factorr01TT Liu, BE280A, UCSD, Fall 2006Small-Angle (paraxial) ApproximationAnderson and Trahey 2000r015TT Liu, BE280A, UCSD, Fall 2006Fresnel ApproximationAnderson and Trahey 2000Approximates spherical wavefront with a parabolic phaseprofileTT Liu, BE280A, UCSD, Fall 2006Fresnel Approximation! U(x0, y0) =exp( jkz)j"z##expjk2zx1$ x0( )2+ y1$ y0( )2( )% & ' ( ) * s x1, y1( )dx1dy1=exp( jkz)j"zs(x0, y0) ++expjk2zx02+ y02( )% & ' ( ) * % & ' ( ) *6TT Liu, BE280A, UCSD, Fall 2006Fraunhofer Approximation! kr01" kz 1+12x1# x0z$ % & ' ( ) 2+12y1# y0z$ % & ' ( ) 2$ % & & ' ( ) ) = kz 1+12z2x12# 2x1x0+ x02( )+12z2y12# 2y1y0+ y02( )$ % & ' ( ) = kz +k2zx12+ y12( )+k2zx02+ y02( )#kzx1x0+ y1y0( )" kz + +k2zx02+ y02( )#kzx1x0+ y1y0( )Assume this termis negligible.TT Liu, BE280A, UCSD, Fall 2006Fraunhofer Condition! k2zx12+ y12( )Phase term due to position on transducer isFar-field condition is! k2zx12+ y12( )<< 1z >>k2x12+ y12( )="#x12+ y12( )For a square DxD transducer, x12+ y12= D2/4z >>"D24#$D2#7TT Liu, BE280A, UCSD, Fall 2006Fraunhofer ApproximationAnderson and Trahey 2000Quadratic phase termFourier transform of thesource with! kx=x0"z ky=y0"zTT Liu, BE280A, UCSD, Fall 2006Plane Wave (Fraunhofer) Approximationzx0x1θθdr01! d = "x1sin#sin#=x0r01$x0zd $ "x0x1z8TT Liu, BE280A, UCSD, Fall 2006Plane Wave Approximation! 1rexp( jkr) "1zexp jk z + d( )( )=1zexp j2#$z %x0x1z& ' ( ) * + & ' ( ) * + U(x0) = s(x1)%,,-1rexp( jkr)dx1 " s(x1)%,,-1zexp j2#$z %x0x1z& ' ( ) * + & ' ( ) * + dx1 =1zexp j2#z$& ' ( ) * + s(x1)%,,-exp %j2#x0x1$z& ' ( ) * + dx1 =1zexp j2#z$& ' ( ) * + s(x1)%,,-exp % j2#kxx1( )dx1 =1zexp j2#z$& ' ( ) * + F s(x)[ ]kx=x0$zTT Liu, BE280A, UCSD, Fall 2006Plane Wave Approximation! In generalU(x0, y0) =1zexp j2"z#$ % & ' ( ) F s(x, y)[ ]kx=x0#z,ky=y0#z,Examples(x, y) = rect(x / D)rect(y / D)U(x0, y0) =1zexp( jkz)D2sinc Dkx( )sinc Dky( ) =1zexp( jkz)D2sinc Dx0#z$ % & ' ( ) sinc Dkyy0#z$ % & ' ( ) Zeros occur at x0=n#zD and y0=n#zD Beamwidth of the sinc function is #zD9TT Liu, BE280A, UCSD, Fall 2006! "zD1! D1! "zD2! D22"! D12"! D2TT Liu, BE280A, UCSD, Fall 2006ExampleAnderson and Trahey 2000! rectxD" # $ % & ' rectxd" # $ % & ' (1dcombxd" # $ % & ' ) * + , - . / Dsinc(Dkx) ( d sinc(dkx)comb(dkx)[ ]SidelobesQuestion: What should we do to reduce the sidelobes?10TT Liu, BE280A, UCSD, Fall 2006Transducer DimensionAnderson and Trahey 2000! Goal : Operate in the Fresnel Zonez < D2/"Dopt#"zmaxExamplezmax= 20 cm"= 0.5 mmDopt= 1 cmTT Liu, BE280A, UCSD, Fall 2006Focusing in Fresnel Zone! U(x0, y0) =exp( jkz)j"z##expjk2zx1$ x0( )2+ y1$ y0( )2( )% & ' ( ) * s x1, y1( )dx1dy1=exp( jkz)j"z##expjk2zx12+ y12( )+ x02+ y02( )$ 2 x1x0+ y1y0( )( )% & ' ( ) * s x1, y1( )dx1dy1=exp( jkz)j"zexpjk2zx02+ y02( )% & ' ( ) * exp( jkz)j"z##expjk2zx12+ y12( )% & ' ( ) * exp $jkzx1x0+ y1y0( )% & ' ( ) * s x1, y1( )dx1dy1! Use time delays to compensate for this phase term! U(x0, y0) =exp( jkz)j"zexpjk2zx02+ y02( )# $ % & ' ( F expjk2zx12+ y12( )# $ % & ' ( s x1, y1( )) * + , - .11TT Liu, BE280A, UCSD, Fall 2006Focusing in Fresnel Zone! U(x0, y0) =exp( jkz)j"zexpjk2zx02+ y02( )# $ % & ' ( F expjk2zx12+ y12( )# $ % & ' ( s x1, y1( )) * + , - . Make ! s x1, y1( )= s0x1, y1( )exp "jk2z0x12+ y12( )# $ % & ' ( ! U(x0, y0) =exp( jkz0)j"z0expjk2z0x02+ y02( )# $ % & ' ( F s x1, y1( )[ ]At the focal depth z =z0Beamwidth at the focal depth is: ! "z0DTT Liu, BE280A, UCSD, Fall 2006Acoustic Lens! "z0D="FD c > c0z012TT Liu, BE280A, UCSD, Fall 2006Depth of Focus! When z " z0, the phase term is #$ = exp %jk2z0x12+ y12( )& ' ( ) * + exp %jk2zx12+ y12( )& ' ( ) * + and the lens is not perfectly focused. Consider variation in the x - direction.#$ =kx221z%1z0& ' ( ) * + For transducer of size D, x22=D24If we want #$ =,D22-1z%1z0& ' ( ) * + < 1 radian then1z%1z0<2-,D2The larger the D, the smaller the depth of


View Full Document

UCSD BENG 280A - Ultrasound Lecture 2

Documents in this Course
Sampling

Sampling

23 pages

Lecture 1

Lecture 1

10 pages

Lecture 1

Lecture 1

22 pages

X-Rays

X-Rays

20 pages

Spin

Spin

25 pages

Lecture 1

Lecture 1

10 pages

Load more
Download Ultrasound Lecture 2
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Ultrasound Lecture 2 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Ultrasound Lecture 2 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?