DOC PREVIEW
UCSD BENG 280A - Ultrasound Lecture 1

This preview shows page 1-2-3-4-5 out of 14 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1!Bioengineering 280A"Principles of Biomedical Imaging"Fall Quarter 2009"Ultrasound Lecture 1"From Suetens 2002!Sonosite 180!Acuson Sequoia!See also: http://www.youtube.com/watch?v=7gU1uSlxKDs!Basic System!Macovski 1983!Echo occurs at t=2z/c where c is approximately!1500 m/s or 1.5 mm/µs !Basic System!Brunner 2002!2!Transducer!Prince and Links 2006!A-Mode (Amplitude)!Seutens 2002!M-Mode (Motion)!Seutens 2002!B-Mode (Brightness)!Brunner 2002!Seutens 2002!3!B-Mode (Brightness)!Brunner 2002!B-Mode!Seutens 2002!Mayo Clinic!B-Mode!Credit: Mayo Clinic!Seutens 2002!CW Doppler Imaging!4!Seutens 2002!PW Doppler Imaging!Seutens 2002!Color Doppler Imaging!Acoustic Waves!Suetens 2002!Speed of Sound!€ c =1κρ [m s-1]κ= compressibility [m s2 kg-1] = [1/Pascal]ρ= density [kg m-3]Material! Density! Speed m/s!Air! 1.2! 330!Water! 1000! 1480!Bone! 1380-1810! 4080!Fat! 920! 1450!Liver! 1060! 1570!5!Acoustic Wave Equation!€ ∇2p =∂2∂x2+∂2∂y2+∂2∂z2⎛ ⎝ ⎜ ⎞ ⎠ ⎟ p =1c2∂2p∂t2Solutions are of the formp(x,t) = A1f1( x − ct) + A2f2( x + ct)Seutens 2002!Seutens 2002!Plane Waves!€ p( z,t) = cos k(z − ct)( )= cos2πλ( z − ct)⎛ ⎝ ⎜ ⎞ ⎠ ⎟ = cos2πfc(z − ct)⎛ ⎝ ⎜ ⎞ ⎠ ⎟ = cos 2πf (z /c − t)( )€ p( z,t) = exp jk(z − ct)( )€ k = wavenumber =2πλ= 2πkzλ= wavelength =cff = frequency [cycles/sec]T = period =1f€ λ= wavelength€ T = period = 1/ fz! t!Spherical Waves!€ p( r,t) =1rexp( j2πf (t − r /c))€ p( r,t) =1rφ(t − r /c) +1rφ( t + r /c)Outward wave!Inward wave!Outward wave!Note: The phase depends on both space and time. At a given time, wavefront occurs at r = ct. At a given location, wavefront arrives at t = r/c. !Impedance!density kg/m3!speed of sound !Brain 1541 m/s!Liver 1549!Skull bone 4080 m/s!Water 1480 m/s"€ Impedance Z = PressureVelocity=Pv=ρc =ρκNote: particle velocity and speed of sound are not the same!!6!Impedance!Material! Density! Speed m/s! Z (kg/m2/s)!Air! 1.2! 330! 0.0004!Water! 1000! 1480! 1.5!Bone! 1380-1810! 4080! 3.75-7.38!Fat! 920! 1450! 1.35!Liver! 1060! 1570! 1.64-1.68!€ Z =ρc =ρκAcoustic Intensity!€ I = pv=p2ZAlso called acoustic energy flux. Analogous to electric power !Echos!Specular Reflection!€ vi− vr= vt (velocity boundary condition)PiZ1−PrZ1=PtZ2Pi+ Pr= Pt (pressure boundary condition)R =PrPi=Z2− Z1Z2+ Z1≈ΔZZ0€ Pi,vi€ Pt,vt€ Pr,vr€ Z1€ Z2Material! Reflectivity!Brain-skull! 0.66!Fat-muscle! 0.10!Muscle-blood! 0.03!Soft-tissue-air! .9995!7!Reflection and Refraction!Seutens 2002!€ sinθic1=sinθrc1=sinθtc2Snell’s Law!Reflection and Refraction!Seutens 2002!€ vicosθi= vrcosθr+ vtcosθtpiZ1cosθi=prZ1cosθr+ptZ2cosθtpi+ pr= ptR =prpi=Z2cosθi− Z1cosθtZ2cosθi+ Z1cosθtT =ptpi=2Z2cosθiZ2cosθi+ Z1cosθtPressure Reflectivity!Pressure Transmittivity!Reflection and Refraction!Seutens 2002!€ RI=IrIi=pr2pi2=Z2cosθi− Z1cosθtZ2cosθi+ Z1cosθt⎛ ⎝ ⎜ ⎞ ⎠ ⎟ 2TI=ItIi=pt2Z1pi2Z2=4Z1Z2cos2θiZ2cosθi+ Z1cosθt( )2Intensity Reflectivity!Intensity Transmittivity!Example!€ € Example : Fat/liver interface at normal incidenceZfat= 1.35 ×10−6 kg m-2 s-1Zliver= 1.66 ×10−6kg m-2 s-1RI=Zliver− ZfatZliver+ Zfat⎛ ⎝ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ 2= 0.1038!Scattering!€ Point scatterers retransmit the incident wave equallyin all direction (e.g. isotropic scattering). Attenuation!€ Loss of acoustic energy during propagation. Conversion of acoustic energy into heat.p(z,t) = Azf (t − c / z) = A0exp(−µaz ) f (t − c /z)µa= −1zlnAzA0 : units = nepers/cmα= −201zlog10AzA0= 20µalog10e( )≈ 8.7µa : dB/cmAttenuation coefficient!Amplitude attenuation factor!Attenuation!€ α( f ) =α0fnFor frequencies used in medical ultrasound, n ≈1.α( f ) ≈α0fMaterial! α0 [dB/cm/MHz]!fat! 0.63!liver! 0.94!Cardiac muscle! 1.8!bone! 20.0!Example!€ € Example : Fat at 5 MHzAttenuation coefficient = 5MHz × 0.63 dB/cm/MHz = 3.15dB/cmAfter 4 cm, attenuation = 4 * 3.15 = 12.6 dBRelative amplitude is 10(-12.6/20)= 0.2344Recall dB ≡ 20log10Az/ A0( )9!Received signal!€ http://radiographics.rsnajnls.org/content/vol23/issue4/images/large/g03jl25c1x.jpeg!Received signal!€ € e(t) = Ke−2αzz∫∫∫R( x, y,z)s(x, y) p(t − 2z / c)dxdydzAttenuation!Reflection/Scattering!Beam width!Pulse!Attenuation Correction!€ Attenuation Correction and Signal Equation!€ € e(t) = Ke−2αzz∫∫∫R(x, y,z)s(x, y) p(t − 2z /c)dxdydz≈ Ke−αctct /2R(x, y,z)s(x, y) p(t − 2z /c)dxdydz∫∫∫ec(t) = cteαcte(t)≈ K R(x, y,z)s(x, y) p(t − 2z /c)dxdydz∫∫∫=c2R(x, y,cτ/2)s(x, y) p(t −τ)dxdydτ∫∫∫10!Depth Response!€ € p(t − 2z0/c) = p(2z /c − 2z0/c)= p2(z − z0)c⎛ ⎝ ⎜ ⎞ ⎠ ⎟ € Depth response€ Therefore impulse response is simplyp(t) in the time domain orp(2z /c) in the spatial domainDepth Resolution!€ z!p(t)!t!2z0/c! (2z0/c)+T!T!z0!p(t-2z0/c)!€ z!z0!z0+cT/2!P(2z/c-2z0/c)!Depth Resolution!€ € p(t) = p(2z/c) determines the depth resolution Pulses are of the form a(t)cos(2πf0t +θ) where a(t) is the envelope function and f0 is the resonantfrequency of the transducer.The duration of T of a(t) is typically chosen to be about 2 or 3 periods (e.g. T = 3/f0). If the duration is too short, the bandwidth of thepulse will be very large and much of its power will be attenuated.The depth resolution is approximately Δz = cT/2 ≈ 1.5c / f0= 1.5λ.T!1/f0!Depth Resolution!€ € The depth resolution is approximately Δz = cT/2 ≈1.5c / f0= 1.5λ.Example : For f0= 5 MHz, λ= c/f = (1500m /s)/(5 ×106Hz) = 0.3mm Δz = 1.5λ= 0.45 mmTrade - offHigher f0⇒ Smaller Δz ⇒ but more attenuationExample : Assume 1dB/cm/MHzFor 10 cm depth, 20 cm roundtrip path length.At 1 MHz 20 dB of attenuation ⇒ Attenuation = 0.1 At 10 MHz 200 dB of attenuation ⇒ Attenuation = 1x10-1011!Depth of Penetration!€ Assume system can handle L dB of loss, thenL = 20log10AzA0⎛ ⎝ ⎜ ⎞ ⎠ ⎟ We also have the definition α= -1z20log10AzA0⎛ ⎝ ⎜ ⎞ ⎠ ⎟ and the approximationα=α0fTotal range a wave can travel before attenuation L isz = Lα0fDepth of penetration isdp=L2α0fDepth of Penetration!Frequency (MHz)!Depth of Penetration(cm)!1! 40!2! 20!3! 13!5! 8!10! 4!20! 2!Assume L = 80 dB; α0= 1dB/cm/MHz!Pulse Repetition and


View Full Document

UCSD BENG 280A - Ultrasound Lecture 1

Documents in this Course
Sampling

Sampling

23 pages

Lecture 1

Lecture 1

10 pages

Lecture 1

Lecture 1

22 pages

X-Rays

X-Rays

20 pages

Spin

Spin

25 pages

Lecture 1

Lecture 1

10 pages

Load more
Download Ultrasound Lecture 1
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Ultrasound Lecture 1 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Ultrasound Lecture 1 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?