DOC PREVIEW
UCSD BENG 280A - X-Rays/CT Lecture 1

This preview shows page 1-2-3-4-5 out of 14 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1TT Liu, BE280A, UCSD Fall 2004Bioengineering 280APrinciples of Biomedical ImagingFall Quarter 2004X-Rays/CT Lecture 1TT Liu, BE280A, UCSD Fall 2004Topics• X-Rays• Computed Tomography• Direct Inverse and Iterative Inverse• Backprojection• Projection Theorem• Filtered BackprojectionTT Liu, BE280A, UCSD Fall 2004EM spectrumSuetens 20022TT Liu, BE280A, UCSD Fall 2004X-Ray TubeSuetens 2002Tungsten filament heated to about 2200 C leading to thermionicemission of electrons.Usually tungsten is used for anodeMolybdenum for mammographyTT Liu, BE280A, UCSD Fall 2004X-Ray Productionhttp://www.scienceofspectroscopy.info/theory/ADVANCED/x_ray.htmCharacteristic RadiationBremsstrahlung(braking radiation)TT Liu, BE280A, UCSD Fall 2004X-Ray SpectrumSuetens 2002bremsstrahlung3TT Liu, BE280A, UCSD Fall 2004Interaction with MatterPhotoelectric effectdominates at low x-rayenergies and high atomicnumbers.Typical energy range for diagnostic x-rays is below 200 keV.The two most important types of interaction are photoeletricabsorption and Compton scattering.Compton scatteringdominates at high x-rayenergies and low atomicnumbers, not much contrasthttp://www.eee. ntu.ac.uk/research/vision/asobaniaTT Liu, BE280A, UCSD Fall 2004Interaction with MatterPhotoelectric absorptionCompton ScatteringPair ProductionTT Liu, BE280A, UCSD Fall 2004Attenuation€ Iout= Iinexp(−µd)dFor single-energy x-rays passing through a homogenous object:Linear attenuation coefficient4TT Liu, BE280A, UCSD Fall 2004Attenuation510 50 100 15010.1AttenuationCoefficient500BoneMuscleFatAdapted from www.cis.rit.edu/class/simg215/xrays.ppt Photon Energy (keV)Photoelectric effectdominatesCompton ScatteringdominatesTT Liu, BE280A, UCSD Fall 2004Half Value LayerValues from Webb 20032.84.51502.33.91001.23.0500.41.830HVLBone (cm)HVL,muscle(cm)X-rayenergy(keV)In chest radiography, about 90% of x-rays are absorbed by body.Average energy from a tungsten source is 68 keV. However,many lower energy beams are absorbed by tissue, so averageenergy is higher. This is referred to as beam-hardening, andreduces the contrast.TT Liu, BE280A, UCSD Fall 2004Attenuation€ Iout= Iinexp −µ(x)dxxinxout∫( )For an inhomogenous object:Integrating over energies€ Iout=σ(E )0∞∫exp −µ(E,x)dxxinxout∫( )dEIntensity distribution of beam5TT Liu, BE280A, UCSD Fall 2004X-Ray Imaging ChainSuetens 2002Reduces effects of Compton scatteringTT Liu, BE280A, UCSD Fall 2004X-ray filmFlexible base~ 150 µmEmulsion withsilver halide crystalsEach layer~ 10 µmSilver halide crystals absorb optical energy. After development,crystals that have absorbed enough energy are converted tometallic silver and look dark on the screen. Thus, parts in theobject that attenuate the x-rays will look brighter.TT Liu, BE280A, UCSD Fall 2004Intensifying Screenhttp://learntech.uwe.ac.uk/radiography/RScience/imaging_principles_d/diagimage11.htmhttp://www.sunnybrook.utoronto.ca:8080/~selenium/xray .html#Film6TT Liu, BE280A, UCSD Fall 2004X-Ray ExamplesSuetens 2002TT Liu, BE280A, UCSD Fall 2004X-Ray w/ Contrast AgentsSuetens 2002Angiogram using an iodine-basedcontrast agent.K-edge of iodine is 33.2 keVBarium SulfateK-edge of Barium is 37.4 keVTT Liu, BE280A, UCSD Fall 2004Computed TomographySuetens 20027TT Liu, BE280A, UCSD Fall 2004Computed TomographySuetens 2002ParallelBeamFan BeamTT Liu, BE280A, UCSD Fall 2004CT Number€ CT_number = µ−µwaterµwater×1000Measured in Hounsfield Units (HU)Air: -1000 HUSoft Tissue: -100 to 60 HUCortical Bones: 250 to 1000 HUTT Liu, BE280A, UCSD Fall 2004CT DisplaySuetens 20028TT Liu, BE280A, UCSD Fall 2004ProjectionsSuetens 2002€ rs      =cosθsinθ−sinθcosθ      xy      xy      =cosθ−sinθsinθcosθ      rs      TT Liu, BE280A, UCSD Fall 2004ProjectionsSuetens 2002€ Iθ(r) = I0exp −µ(x, y)dsLr ,θ∫      = I0exp −µ(r cosθ− ssinθ,rsinθ+ scosθ)dsLr ,θ∫      TT Liu, BE280A, UCSD Fall 2004ProjectionsSuetens 2002€ Iθ(r) = I0exp −µ(r cosθ− ssinθ,r sinθ+ scosθ)dsLr,θ∫      € pθ(r) = − lnIθ(r)I0=µ(r cosθ− ssinθ,r sinθ+ scosθ)dsLr,θ∫Sinogram9TT Liu, BE280A, UCSD Fall 2004SinogramSuetens 2002TT Liu, BE280A, UCSD Fall 2004Direct Inverse Approachµ4µ3µ2µ1p1p2p3p4p1= µ1+ µ2p2= µ3+ µ4p3= µ1+ µ3p4= µ2+ µ44 equations, 4 unknowns. Are these the correct equations to use? € p1p2p3p4            =1 1 0 00 0 1 11 0 1 00 1 0 1            µ1µ2µ3µ4            No, equations are not linearly independent.p4= p1+ p2- p3Matrix is not full rank.TT Liu, BE280A, UCSD Fall 2004Direct Inverse Approachµ4µ3µ2µ1p1p2p3p4p1= µ1+ µ2p2= µ3+ µ4p3= µ1+ µ3p5= µ1+ µ44 equations, 4 unknowns. These are linearly independent now.In general for a NxN image, N2 unknowns, N2 equations.This requires the inversion of a N2xN2 matrixFor a high-resolution 512x512 image, N2=262144 equations.Requires inversion of a 262144x262144 matrix! Inversion process sensitive to measurement errors. € p1p2p3p4            =1 1 0 00 0 1 11 0 1 01 0 0 1            µ1µ2µ3µ4            p510TT Liu, BE280A, UCSD Fall 2004Iterative Inverse ApproachAlgebraic Reconstruction Technique (ART)4321374 652.52.52.52.5553.53.51.51.5375 54321375 5TT Liu, BE280A, UCSD Fall 2004BackprojectionSuetens 2002000030000 03030303000111000100121001110131011111141111TT Liu, BE280A, UCSD Fall 2004BackprojectionSuetens 2002€ b(x, y) = B p r,θ( ){ }= p(x cosθ+ y sinθ,θ)dθ0π∫11TT Liu, BE280A, UCSD Fall 2004BackprojectionSuetens 2002€ b(x, y) = B p r,θ( ){ }= p(x cosθ+ y sinθ,θ)dθ0π∫TT Liu, BE280A, UCSD Fall 2004Projection TheoremSuetens 2002€ U(kx,0) =µ(x, y)e− j 2π(kxx + kyy)−∞∞∫−∞∞∫dxdy=µ(x, y)dy−∞−∞∫[ ]−∞−∞∫e− j 2πkxxdx= p0(x)−∞−∞∫e− j 2πkxxdx= p0(r)−∞−∞∫e− j 2πkrdrTT Liu, BE280A, UCSD Fall 2004Projection TheoremSuetens 2002€ U(kx,ky) =µ(x, y)e− j 2π(kxx + kyy)−∞∞∫−∞∞∫dxdy= F2Dµ(x, y)[ ]€ P(k,θ) = pθ(r)e− j 2πkr−∞∞∫drF€ U(kx,ky) = P(k,θ)€ kx= k cosθky= k sinθk = kx2+ ky212TT Liu, BE280A, UCSD Fall 2004Fourier ReconstructionSuetens


View Full Document

UCSD BENG 280A - X-Rays/CT Lecture 1

Documents in this Course
Sampling

Sampling

23 pages

Lecture 1

Lecture 1

10 pages

Lecture 1

Lecture 1

22 pages

X-Rays

X-Rays

20 pages

Spin

Spin

25 pages

Lecture 1

Lecture 1

10 pages

Load more
Download X-Rays/CT Lecture 1
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view X-Rays/CT Lecture 1 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view X-Rays/CT Lecture 1 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?