DOC PREVIEW
UCSD BENG 280A - MRI Lecture 1

This preview shows page 1-2-3-4-5 out of 16 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1TT. Liu, BE280A, UCSD Fall 2005Bioengineering 280APrinciples of Biomedical ImagingFall Quarter 2005MRI Lecture 1TT. Liu, BE280A, UCSD Fall 2005Topics• The concept of spin• Precession of magnetic spin• Relaxation• Bloch EquationTT. Liu, BE280A, UCSD Fall 2005Spin• Intrinsic angular momentum of elementaryparticles -- electrons, protons, neutrons.• Spin is quantized. Key concept in QuantumMechanics.2TT. Liu, BE280A, UCSD Fall 2005The History of Spin• 1921 Stern and Gerlach observed quantization ofmagnetic moments of silver atoms• 1925 Uhlenbeck and Goudsmit introduce theconcept of spin for electrons.• 1933 Stern and Gerlach measure the effect ofnuclear spin.• 1937 Rabi predicts and observes nuclear magneticresonance.TT. Liu, BE280A, UCSD Fall 2005Classical Magnetic MomentIA € r µ = IAˆ n TT. Liu, BE280A, UCSD Fall 2005Energy in a Magnetic FieldLorentz ForceB € E = −r µ • B= −µzBMinimum Energy StateMaximum Energy State3TT. Liu, BE280A, UCSD Fall 2005Stern-Gerlach ExperimentImage from http://library.thinkquest.org/19662/high/eng/exp-stern-gerlach.html?tqskip=1TT. Liu, BE280A, UCSD Fall 2005Force in a Field Gradient€ F = −∇E =µz∂Bz∂zDeflected upDeflected downIncreasingvertical B-field. TT. Liu, BE280A, UCSD Fall 2005Stern-Gerlach ExperimentImage from http://library.thinkquest.org/19662/high/eng/exp-stern-gerlach.html?tqskip=14TT. Liu, BE280A, UCSD Fall 2005Quantization of Magnetic MomentThe key finding of the Stern-Gerlach experiment is thatthe magnetic moment isquantized. That is, it can onlytake on discrete values.In the experiment, the findingwas that the component ofmagnetization along thedirection of the applied field wasquantized: µz = + µ0 OR - µ0http://www.le.ac.uk /biochem/mp84/teachingTT. Liu, BE280A, UCSD Fall 2005Magnetic Moment and Angular MomentumA charged sphere spinning about its axishas angular momentum and a magnetic moment.This is a classical analogy that is useful forunderstanding quantum spin, but remember thatit is only an analogy!Relation: µ = γ S where γ is the gyromagnetic ratio andS is the spin angular momentum.TT. Liu, BE280A, UCSD Fall 2005Quantization of Angular MomentumBecause the magnetic moment is quantized, so is theangular momentum.In particular, the z-component of the angular momentumIs quantized as follows: € Sz= mshms∈ −s,−(s −1), ....s{ }s is an integer or half integer5TT. Liu, BE280A, UCSD Fall 2005Nuclear Spin Rules2H1H, 23Na, 31P17O12C, 16OExamples j/2EvenOdd jOddOdd j/2OddEven 0EvenEven SpinNumber ofNeutronsNumber ofProtonsTT. Liu, BE280A, UCSD Fall 2005Hydrogen Proton € Spin 1/2Sz=+h /2−h /2    µz=+γh /2−γh /2    TT. Liu, BE280A, UCSD Fall 2005Boltzmann DistributionB0ΔΕ = γhΒ0Ε = −µzΒ0Ε = µzΒ0Number Spins UpNumber Spins Down= exp(-ΔE/kT)Ratio = 0.999990 at 1.5T !!!Corresponds to an excess of about 10 up spins per million6TT. Liu, BE280A, UCSD Fall 2005Equilibrium Magnetization € M0= Nµz= Nnup−µz( )+ ndownµz( )N      = NµeµzB / kT− e−µzB / kTeµzB / kT+ e−µzB / kT≈ Nµz2B /(kT)= Nγ2h2B /(4kT)N = number of nuclear spins per unit volumeMagnetization is proportional to applied field. TT. Liu, BE280A, UCSD Fall 20057T Human imager at U. Minn.3T Human imager at UCSD.7T Rodent Imager at UCSD9.4T Human imager at UICBigger is betterTT. Liu, BE280A, UCSD Fall 2005Gyromagnetic Ratios 75 mM17.25 1.1311/2 31P 80 mM11.27 2.2163/2 23Na 88 M42.58 2.7931/2 1HAbundance γ/(2π)(MHz/Tesla)MagneticMomentSpinNucleusSource: Haacke et al., p. 277TT. Liu, BE280A, UCSD Fall 2005TorqueBµNN = µ x BTorqueFor a non-spinning magnetic moment, the torque will try to align the moment with magnetic field (e.g. compass needle)TT. Liu, BE280A, UCSD Fall 2005PrecessionN = µ x B= NdSdtµ = γ S= µ x B= µ x γBdµdtTorqueChange in Angular momentumRelation betweenmagnetic moment andangular momentumdSdtTT. Liu, BE280A, UCSD Fall 2005PrecessionBµ= µ x γBdµdtdµAnalogous to motion of a gyroscopePrecesses at an angular frequency ofω = γ ΒThis is known as the Larmor frequency.http://www.astrophysik .uni-kiel .de/~hhaertel/mpg_e/gyros_free.mpg8TT. Liu, BE280A, UCSD Fall 2005Larmor Frequencyω = γ Βf = γ Β / (2 π)Angular frequency in rad/secFrequency in cycles/sec or Hertz, Abbreviated HzFor a 1.5 T system, the Larmor frequency is 63.86 MHzwhich is 63.86 million cycles per second. For comparison,KPBS-FM transmits at 89.5 MHz. Note that the earth’s magnetic field is about 50 µΤ, so thata 1.5T system is about 30,000 times stronger. TT. Liu, BE280A, UCSD Fall 2005Notation and Units€ 1 Tesla = 10,000 GaussEarth's field is about 0.5 Gauss 0.5 Gauss = 0.5x10-4 T = 50 µTγ= 26752 radians/second/Gaussγ=γ/2π= 4258 Hz/Gauss = 42.58 MHz/TeslaTT. Liu, BE280A, UCSD Fall 2005Magnetization Vector€ M =1Vµiprotons in V∑€ dMdt=γM × BVector sum of the magneticmoments over a volume.For a sample at equilibrium in amagnetic field, the transversecomponents of the moments cancelout, so that there is only alongitudinal component.Equation of motion is the sameform as for individual moments.http://www.easymeasure.co.uk/principlesmri.aspx9TT. Liu, BE280A, UCSD Fall 2005Simplified Drawing of Basic Instrumentation.Body lies on table encompassed bycoils for static field Bo, gradient fields (two of three shown), and radiofrequency field B1.Image, caption: copyright Nishimura, Fig. 3.15TT. Liu, BE280A, UCSD Fall 2005RF ExcitationFrom Levitt, Spin Dynamics, 2001TT. Liu, BE280A, UCSD Fall 2005RF ExcitationImage & caption: Nishimura, Fig. 3.2B1 radiofrequency field tuned toLarmor frequency and applied intransverse (xy) plane inducesnutation (at Larmor frequency) ofmagnetization vector as it tipsaway from the z-axis. - lab frame of referenceAt equilibrium, net magnetizaionis parallel to the main magneticfield. How do we tip themagnetization away fromequilibrium?http://www.eecs .umich .edu/%7Ednoll/BME516/10TT. Liu, BE280A, UCSD Fall 2005Images & caption: Nishimura, Fig. 3.3a) Laboratory frame behavior of M b) Rotating frame behavior of Mhttp://www.eecs .umich .edu/%7Ednoll/BME516/TT. Liu, BE280A, UCSD Fall 2005RF ExcitationFrom Buxton 2002TT. Liu, BE280A, UCSD Fall 2005Free Induction Decay (FID)http://www.easymeasure.co.uk/principlesmri.aspx11TT. Liu, BE280A, UCSD Fall 2005RF ExcitationM0zyxDoing nothingM0 (1 – e-t/T1)T1 recoveryzxyzExcitationyxRelaxation zxyT2 decaye-t/T2Credit: Larry FrankTT.


View Full Document

UCSD BENG 280A - MRI Lecture 1

Documents in this Course
Sampling

Sampling

23 pages

Lecture 1

Lecture 1

10 pages

Lecture 1

Lecture 1

22 pages

X-Rays

X-Rays

20 pages

Spin

Spin

25 pages

Lecture 1

Lecture 1

10 pages

Load more
Download MRI Lecture 1
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view MRI Lecture 1 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view MRI Lecture 1 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?