DOC PREVIEW
UCSD BENG 280A - MRI Lecture 4

This preview shows page 1-2-3-4 out of 13 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1Thomas Liu, BE280A, UCSD, Fall 2006Bioengineering 280APrinciples of Biomedical ImagingFall Quarter 2006MRI Lecture 4Thomas Liu, BE280A, UCSD, Fall 2006RF ExcitationFrom Levitt, Spin Dynamics, 20012Thomas Liu, BE280A, UCSD, Fall 2006RF ExcitationImage & caption: Nishimura, Fig. 3.2B1 radiofrequency field tuned toLarmor frequency and applied intransverse (xy) plane inducesnutation (at Larmor frequency) ofmagnetization vector as it tipsaway from the z-axis. - lab frame of referenceAt equilibrium, net magnetizaionis parallel to the main magneticfield. How do we tip themagnetization away fromequilibrium?Thomas Liu, BE280A, UCSD, Fall 2006RF Excitationhttp://www.eecs.umich.edu/%7Ednoll/BME516/3Thomas Liu, BE280A, UCSD, Fall 2006Images & caption: Nishimura, Fig. 3.3a) Laboratory frame behavior of M b) Rotating frame behavior of Mhttp://www.eecs.umich.edu/%7Ednoll/BME516/Thomas Liu, BE280A, UCSD, Fall 2006Nishimura 1996! B1(t) = 2B1(t)cos"t( )i= B1(t) cos"t( )i # sin"t( )j( )+ B1(t) cos"t( )i + sin"t( )j( )4Thomas Liu, BE280A, UCSD, Fall 2006! Rotating Frame Bloch EquationdMrotdt= Mrot"#BeffBeff= Brot+$rot#; $rot=00%$& ' ( ( ( ) * + + + Thomas Liu, BE280A, UCSD, Fall 2006! Let Brot= B1(t)i + B0kBeff= Brot+"rot#= B1(t)i + B0$"#% & ' ( ) * kIf "="0=#B0Then Beff= B1(t)i5Thomas Liu, BE280A, UCSD, Fall 2006Nishimura 1996! Flip angle"=#10$%(s)dswhere#1(t) =&B1(t)Thomas Liu, BE280A, UCSD, Fall 2006Nishimura 19966Thomas Liu, BE280A, UCSD, Fall 2006Nishimura 1996Thomas Liu, BE280A, UCSD, Fall 2006Slice Selectionzslicefrect(f/W)W=γGzΔz/(2π)Δzsinc(Wt)7Thomas Liu, BE280A, UCSD, Fall 2006! Let Brot= B1(t)i + B0+"Gzz( )kBeff= Brot+#rot"= B1(t)i + B0+"Gzz $#"% & ' ( ) * kIf #=#0Beff= B1(t)i +"Gzz( )kThomas Liu, BE280A, UCSD, Fall 2006Nishimura 19968Thomas Liu, BE280A, UCSD, Fall 2006Small Tip Angle ApproximationMzM0! "Mxy! For small "Mz= M0cos"# M0Mxy= M0sin"# M0"Thomas Liu, BE280A, UCSD, Fall 2006! Recall that in the rotating frame, flip angle "=#B10$%(s)ds Define &(z) as the Larmor Frequency at each location z referenced to &0The effective field felt in each spin's rotating frame of reference is :B1e(t) = B1(t)exp( j&(z)t)Therefore the flip angle in each spin's frame of reference is"(t,z) =#exp( j&(z)s)B10t%(s)ds With respect to the on - resonance frame of reference, there is alsoa relative phase shift of exp(' j&(z)t), so that "(t,z) =#exp(' j&(z)t) exp( j&(z)s)B10t%(s)ds Applying small angle approximation leads to Mr(t,z) ( jM0"(t,z) = M0#exp(' j&(z)t) exp( j&(z)s)B10t%(s)ds9Thomas Liu, BE280A, UCSD, Fall 2006! Small Tip Angle ApproximationMr(t,z) = jM0exp(" j#(z)t) exp(0t$j#(z)s)#1(s)dsFor symmetric pulse of length %Mr(%,z) = jM0exp(" j#(z)%/2) exp("%/ 2%/ 2$j2&f (z)s)#1(s +%/2)ds = jM0exp(" j#(z)%/2)F#1(t +%/2){ }f =" f (z)="'2&GzzThomas Liu, BE280A, UCSD, Fall 2006! B1(t) = B1rectt "#/2#$ % & ' ( ) Mr#,z( )= jM0exp(" j*(z)#) exp( j*(z)s)0#+*1rects "#/2#$ % & ' ( ) ds= jM0exp(" j*(z)#/2)F1D*1rectt#$ % & ' ( ) $ % & ' ( ) f = ",/ 2-( )Gzz= jM0exp(" j*(z)#/2)*1#sinc f#( )= jM0exp(" j*(z)#/2)*1#sinc,Gz#2-z$ % & ' ( ) Small Tip Angle ExampleNishimura 199610Thomas Liu, BE280A, UCSD, Fall 2006! Mr(3"/2,z) = exp j#(z)"/2( )Mr(",z) = jM0exp j#(z)"/2( )exp $ j#(z)"/2( )F#1(t +"/2){ }f =$%2&Gzz= j M0F#1(t +"/2){ }f =$%2&GzzRefocusingNishimura 1996Thomas Liu, BE280A, UCSD, Fall 2006Slice SelectionGx(t)Gy(t)RFGz(t)Slice select gradientSlice refocusing gradient11Thomas Liu, BE280A, UCSD, Fall 2006Gradient EchoGx(t)Gy(t)RFGz(t)Slice select gradientSlice refocusing gradientADCSpins all inphase at kx=0Thomas Liu, BE280A, UCSD, Fall 2006! B1(t +"/2) = A sinc t /"( )0.5 + 0.46cos2#t"$ % & ' ( ) $ % & ' ( ) = Asinc t /"( )w(t)F(B1(t +"/2)) = A" rect( f") *W ( f )= A" rect+Gzz"2#$ % & ' ( ) *W ,+Gzz2#$ % & ' ( ) Small Tip Angle Example! Width of the rect function is "z =2#$Gz%12Thomas Liu, BE280A, UCSD, Fall 2006Slice Selectionzslicefrect(fτ)Δzsinc(t/τ)! "f =1#=$Gz"z2% Thomas Liu, BE280A, UCSD, Fall 2006Nishimura 199613Thomas Liu, BE280A, UCSD, Fall 2006! Example"z = 5 mm;#= 400 µsec; $=%/2Gz=2%&"z#=1(4257Hz /G)(0.5cm)(400e ' 6)= 1.175 G /cm$(&B1sincs ' T /2#) * + , - . 0T/ds (&B10 area of sinc( )=&B1#B1=$&#=%/22%(4257Hz /G)(400e ' 6)= 0.1468


View Full Document

UCSD BENG 280A - MRI Lecture 4

Documents in this Course
Sampling

Sampling

23 pages

Lecture 1

Lecture 1

10 pages

Lecture 1

Lecture 1

22 pages

X-Rays

X-Rays

20 pages

Spin

Spin

25 pages

Lecture 1

Lecture 1

10 pages

Load more
Download MRI Lecture 4
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view MRI Lecture 4 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view MRI Lecture 4 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?