DOC PREVIEW
UT M 408D - HW01-solutions

This preview shows page 1-2-3-4 out of 11 pages.

Save
View full document
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

tapia jat4858 HW01 clark 52990 This print out should have 22 questions Multiple choice questions may continue on the next column or page find all choices before answering 001 10 0 points Evaluate the integral Z 6 ln x I dx x2 e 1 I 2 I 3 I 4 I 5 I 6 I 6 1 ln 6 1 e 2 6 1 ln 6 1 e 2 2 1 ln 6 1 e 6 2 1 ln 6 1 correct e 6 6 1 ln 6 1 e 2 2 1 ln 6 1 e 6 Explanation After integration by parts Z Z 1 2 1 2 2 x ln x dx x ln x x2 ln x dx 2 x Z 1 x2 ln x 2 x ln x dx 2 Thus Consequently 10 0 points 1 C I 2x2 ln x 2 ln x 2 Determine the integral Z I 4x ln x 2 dx 1 I 4x2 ln x 2 ln x 2 1 1 x2 ln x x2 C 2 4 1 1 1 x2 ln x 2 x2 ln x x2 C 2 2 4 2 1 ln 6 1 I e 6 1 But after integration by parts once again Z Z 1 1 1 2 x2 dx x ln x dx x ln x 2 2 x Z 1 1 x dx x2 ln x 2 2 Thus Z x ln x 2 dx h1 1 i6 I ln x x x e Consequently 1 2 I 2x2 ln x 2 ln x C 2 1 C 3 I 4x2 ln x 2 ln x 2 1 C 4 I 4x2 ln x 2 ln x 2 1 2 2 5 I 2x ln x ln x C 2 correct 1 C 6 I 2x2 ln x 2 ln x 2 Explanation After integration by parts h1 i6 Z 6 1 I ln x dx 2 x e e x 002 1 keywords integration by parts log function C 003 10 0 points tapia jat4858 HW01 clark 52990 Evaluate the definite integral I Z 1 I 1 3e4 x dx 0 1 I 2 I 3 I 4 I 5 I 6 I 3 4 3e 1 2 3 4 3e 1 correct 8 3 4 3e 1 8 3 4 4e 1 2 3 4 4e 1 2 3 4 4e 1 8 Explanation First we use the substitution u x to eliminate the square root in the integrand For then 1 dx du 2 x so dx 2 xdu 2u du Thus I 6 Z 3 I 4 I 3 5 I 3 4 I 3e 1 8 10 0 points Evaluate the integral 4 0 1 3 2 2 Explanation After integration by parts i 4 1h 4 x 5 sin 2x 0 2 Z 1 4 d sin 2x 4 x 5 dx 2 0 dx Z 4 5 1 sin 2x dx 2 2 2 0 I 5 1 4 cos 2x 0 2 2 Consequently u e4u du and so I 7 1 correct 2 2 1 This last integral we evaluate using integration by parts Hence h3 i1 3 Z 1 4u I ue e4u du 2 2 0 0 h3 3 4u i1 4u ue e 0 2 8 Z 1 3 2 2 I 7 I 0 004 2 4 x 5 cos 2x dx 005 7 1 2 2 10 0 points Evaluate the integral Z I e x cos x dx 0 1 I e 1 1 2 I e 1 2 3 I 1 1 e 2 4 I 1 e tapia jat4858 HW01 clark 52990 3 5 I 1 e 1 correct 2 4 I 3 tan x ln sec x x C 6 I 1 e 1 2 1 5 I 3 x tan x ln sec x x2 C 2 1 6 I 4 x tan x ln sec x x C 2 7 I e 1 8 I e 1 Explanation After integration by parts h i Z x I e cos x e x sin x dx 0 e 1 Z 0 e x Explanation As tan2 x sec2 x 1 the integrand can be rewritten as x 2 sec2 x sec2 x 1 x 3 sec2 x 1 Thus sin x dx I 0 To evaluate this last integral we integrate by parts once again For then Z h i e x sin x dx e x sin x Z x 3 sec2 x 1 dx 3 Z 1 x sec2 x dx x2 2 On the other hand 0 0 Z d tan x sec2 x dx e x cos x dx 0 I 0 so integration by parts is suggested for evaluating this last integral since then Z Z 2 3 x sec x dx 3 x tan x tan x dx in which case I e 1 I Consequently But I 006 1 e 1 2 10 0 points Determine the integral Z I x 2 sec2 x tan2 x dx 1 I 4 tan x ln sec x x C 2 I 4 tan x ln sec x x2 C 1 3 I 3 x tan x ln sec x x2 C 2 correct Z tan x dx ln sec x C Consequently 1 I 3 x tan x ln sec x x2 C 2 with C an arbitrary constant keywords integration by parts trig function 007 10 0 points The base of a solid S is the region enclosed by the graphs of p y ln x x e y 0 tapia jat4858 HW01 clark 52990 If the cross sections of S perpendicular to the x axis are squares determine the volume V of S 1 V 2 cu units 3 1 I 3 cos 4 1 cos3 C 3 2 I 3 cos 2 V 1 cu unit correct 3 I 3 cos 3 V 2 e3 1 cu units 4 V 1 cu units 2 5 V 1 3 e 1 cu units 3 1 3 sin C 3 4 I 3 cos 1 cos3 C 3 5 I 3 cos 1 3 sin C 3 6 I 3 cos Explanation The base of the solid S is given by 1 cos3 C correct 3 1 3 sin C 3 Explanation After simplification we see that 2 sin sin3 sin 2 sin2 1 On the other hand sin2 1 cos2 1 e 2 Since the square cross section has side length y its area is given by A y y 2 ln x Thus Z e V A y dy 1 Z 1 e 2 y dx Z e ln x dx 1 After Integration by Parts therefore h ie V x ln x x 1 Consequently Thus the integrand can be rewritten as sin 2 1 cos2 sin 3 cos2 As this is now of the form sin f cos the subsitution x cos is suggested For then dx sin d in which case Z 1 3 2 I 3 x dx 3x x C 3 Consequently volume e e 1 1 cu unit 008 …


View Full Document

UT M 408D - HW01-solutions

Download HW01-solutions
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view HW01-solutions and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view HW01-solutions and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?