Unformatted text preview:

MIT 2.71/2.710 Optics12/07/05 wk14-b-13D OpticsMIT 2.71/2.710 Optics12/07/05 wk14-b-22D Optics3D Opticslenses gratingsLight interacts with medium on a sequence of discrete surfacesGRadient INdex optics(GRIN)VolumeHologramsLight interacts with medium throughout a volumethroughout a volumeMIT 2.71/2.710 Optics12/07/05 wk14-b-3MIT 2.71/2.710 Optics12/07/05 wk14-b-4Imaging with traditional lensesdepthoffieldlensAAimagedBBblurredimage planeMIT 2.71/2.710 Optics12/07/05 wk14-b-5Imaging with 3D lensesdepthoffield3D lensBBblockedimage planeAAimagedContrast Defocus⇔MIT 2.71/2.710 Optics12/07/05 wk14-b-6Shape recovery (“profilometry”) with 3D lensesLine scan method: 2D scanningLine scan method: 2D scanninglongitudinal + one lateral dimensionlongitudinal + one lateral dimensionraw imageson CCD camera2½D shape(“profile”)in digital formWorking distanced= 50cmLongitudinal resolution ∆z FWHM< 1mmMIT 2.71/2.710 Optics12/07/05 wk14-b-7z=0 µm z=50 µmz=200 µmz=250 µmoriginalobjectMicroturbine provided by Chee Wei Wong, Alan Epstein, MIT Object Distance = 46 cmObject Distance = 46 cmResolution accomplished Resolution accomplished ≤≤100 100 µµmmraw imagesraw imagesprofileprofilereconstructionreconstructionArnab Sinha, George BarbastathisMIT 3D Optical Systems groupOptics Express 11:3202, 2003Shape recovery (“profilometry”) with 3D lensesMIT 2.71/2.710 Optics12/07/05 wk14-b-8index ofrefractionn0+n1n0– n13D lens: plane-to-plane wave volume hologramMIT 2.71/2.710 Optics12/07/05 wk14-b-9Making the (simplest) 3D lensphotosensitivematerialreferencepoint sourceofsθplane wavesignal beamreferenceplane()()[]rkkr⋅−+=rs10cosnnnafter exposureMIT 2.71/2.710 Optics12/07/05 wk14-b-10Operating the (simplest) 3D lens3D objectobjectivelens3D lenscollectorlensdigitalcameravisiblecolumnx∆y∆z∆Lofsθxyzmm1m100~÷µLMIT 2.71/2.710 Optics12/07/05 wk14-b-11Operating a multiplex 3D lens3D objectobjectivelenscollectorlensdigitalcameravisiblecolumnsXYZXYZ3D lens(multiplex)MIT 2.71/2.710 Optics12/07/05 wk14-b-12Operating a hyperspectral multiplex 3D lens3D objectobjectivelenscollectorlensdigitalcameraXYZXYZvisiblerainbow slices3D lens(multiplex)MIT 2.71/2.710 Optics12/07/05 wk14-b-13Rainbow volume holographic imagingslice #1slice #1slice #2slice #22½D shape2½D shapeWenyang Sun, George BarbastathisMIT 3D Optical Systems groupOptics Letters 30:976, 2005MIT 2.71/2.710 Optics12/07/05 wk14-b-14Multiplex imaging of 3D fluorescent object3D object:fluorescent beadsin waterXYZthree three ““slicesslices””throughthroughfluorescent (3D) object, stacked fluorescent (3D) object, stacked along along longitudinallongitudinaldirection direction ……XYZ……are viewed are viewed simultaneouslysimultaneouslyand and sideside--byby--sidesideon the digital cameraon the digital cameraWenhai Liu,* Demetri Psaltis,* George Barbastathis***Caltech Optical Info. Proc. group **MIT 3D Optical Systems groupOptics Letters 27:854, 2002MIT 2.71/2.710 Optics12/07/05 wk14-b-15Camera pixel layout for 4D (3D spatial + spectral) imaging#1λ1λ2λwslice index#2 #NM pixelsW pixels3D object#1#2 #Nslice indexWNMWzyx×××=×××λ#1#2#Wslitindexcamera dieMIT 2.71/2.710 Optics12/07/05 wk14-b-163D opticalimagetraditionalcamera0 100 200 300 400 500 600 700406080100120140160180200220240irradiance acrossimage cross-sectionSun Light (completely passive) illumination~10cm~5mobjective0 100 200 300 400 500 600 706080100120140160180MIT 2.71/2.710 Optics12/07/05 wk14-b-17Temporal Heterodyninginput signallocal oscillatorlow pass filtertransducerMIT 2.71/2.710 Optics12/07/05 wk14-b-18Temporal Heterodyninginput signallocal oscillatorlow pass filtertransducer()φω+tAiicos()tALLcosω()()φωω−−tAA cosiLiLMIT 2.71/2.710 Optics12/07/05 wk14-b-191D Spatial Heterodyninginput signallocal oscillator(){}φ+xkiAii cos(){}xkiALL cos?MIT 2.71/2.710 Optics12/07/05 wk14-b-201D Spatial Heterodyninginput signallocal oscillator(){}φ+xkiAii exp()()2SSSRRexpexpφ++ xikAxikAthintransparencyMIT 2.71/2.710 Optics12/07/05 wk14-b-211D Spatial HeterodyningSRikkk ++SRikkk −+SRikkk +−SRikkk −−input signallocal oscillator(){}φ+xkiAii exp()()2SSSRRexpexpφ++ xikAxikAMIT 2.71/2.710 Optics12/07/05 wk14-b-221D Spatial Heterodyninginput signallocal oscillator(){}φ+xkiAii exp()()2SSSRRexpexpφ++ xikAxikAMIT 2.71/2.710 Optics12/07/05 wk14-b-231D Spatial Heterodyninginput signallocal oscillator(){}φ+xkiAii exp()()2SSSRRexpexpφ++ xikAxikAMIT 2.71/2.710 Optics12/07/05 wk14-b-241D Spatial HeterodyningSRikkk+−input signallocal oscillator(){}φ+xkiAii exp()()2SSSRRexpexpφ++ xikAxikAMIT 2.71/2.710 Optics12/07/05 wk14-b-251D Spatial HeterodyningSRikkk+−low pass filterinput signallocal oscillator(){}φ+xkiAii exp()()2SSSRRexpexpφ++ xikAxikA()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++′+−SSRiSRi expφφxkkkiAAAMIT 2.71/2.710 Optics12/07/05 wk14-b-261D Spatial Heterodyning in the Fourier domaininput signallocal oscillator(){}φ+′′xkii exp()()2SSSRRexpexpφ+′′+′′xikAxikAℑ⎟⎠⎞⎜⎝⎛−πλδ2ifkxMIT 2.71/2.710 Optics12/07/05 wk14-b-271D Spatial Heterodyning in the Fourier domaininput signallocal oscillator()()2SSSRRexpexpφ+′′+′′xikAxikAℑℑspatial filter()⎥⎦⎤⎢⎣⎡+−−′πλδ2SRikkkfx⎟⎠⎞⎜⎝⎛−πλδ2ifkx(){}φ+′′xkii expMIT 2.71/2.710 Optics12/07/05 wk14-b-2833D Spatial Heterodyning in the Fourier domaininput signallocal oscillator(){}φ+′′⋅rki exp i()()2SSSRRexpexpφ+′′⋅+′′⋅ rkrk iAiA⎟⎠⎞⎜⎝⎛−πλδ2ifkxℑ?MIT 2.71/2.710 Optics12/07/05 wk14-b-2933D Spatial Heterodyning in the Fourier domaininput signallocal oscillator()()2SSSRRexpexpφ+′′⋅+′′⋅ rkrk iAiA⎟⎠⎞⎜⎝⎛−πλδ2ifkxℑ?()⎥⎦⎤⎢⎣⎡+−−′πλδ2SRikkkfx(){}φ+′′⋅rki exp iMIT 2.71/2.710 Optics12/07/05 wk14-b-3033D Spatial Heterodyning in the Fourier domaininput signallocal oscillator()()2SSSRRexpexpφ+′′⋅+′′⋅ rkrk iAiA⎟⎠⎞⎜⎝⎛−πλδ2ifkxℑ?()⎥⎦⎤⎢⎣⎡+−−′πλδ2SRikkkfx(){}φ+′′⋅rki exp iMIT 2.71/2.710 Optics12/07/05 wk14-b-3133D Spatial Heterodyning in the Fourier domaininput signallocal oscillator()()2SSSRRexpexpφ+′′⋅+′′⋅ rkrk iAiA⎟⎠⎞⎜⎝⎛−πλδ2ifkxℑ?()⎥⎦⎤⎢⎣⎡+−−′πλδ2SRikkkfx(){}φ+′′⋅rki exp iMIT 2.71/2.710 Optics12/07/05 wk14-b-32Phase matching as a filter for 3D spatial heterodyningRecording Bragg-matched readoutDiffracted beams from elemental thin


View Full Document

MIT 2 710 - Lecture Notes

Download Lecture Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?