DOC PREVIEW
MIT 2 710 - The ideal thin lens

This preview shows page 1-2-3-4-5-6 out of 19 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MIT 2.71/2.710 Optics11/07/05 wk10-a-1The ideal thin lens as a Fourier transform engineMIT 2.71/2.710 Optics11/07/05 wk10-a-2Fresnel diffraction()()().ddexp),(2exp1;,22inoutyxlyyxxiyxglililyxg⎭⎬⎫⎩⎨⎧−′+−′⎭⎬⎫⎩⎨⎧=′′∫∫λπλπλThe diffracted field is the convolution convolution of the transparency with a spherical waveQ: how can we “undo” the convolution optically?ReminderReminderxyarbitrary lx´y´),(outyxg′′()yxg ,incoherentplane-waveilluminationMIT 2.71/2.710 Optics11/07/05 wk10-a-3Fraunhofer diffractionxyl→∞x´y´),(outyxg′′()yxg ,in()yxlyylxxiyxglyxg dd2- exp, );,(inout⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛′+⎟⎠⎞⎜⎝⎛′∝′′∫λλπThe “far-field” (i.e. the diffraction pattern at a largelongitudinal distance l equals the Fourier transformof the original transparencycalculated at spatial frequencieslyflxfyxλλ′=′= Q: is there another optical element who can perform a Fourier transformation without having to go too far (to ∞ ) ?ReminderReminderMIT 2.71/2.710 Optics11/07/05 wk10-a-4The thin lens (geometrical optics)Ray bending is proportionalproportionalto the distanceto the distance from the axisobject at ∞(plane wave)point object at finite distance(spherical wave)f (focal length)MIT 2.71/2.710 Optics11/07/05 wk10-a-5The thin lens (wave optics)incoming wavefronta(x,y)outgoing wavefronta(x,y) t(x,y)eiφ(x,y)(thin transparency approximation)MIT 2.71/2.710 Optics11/07/05 wk10-a-6The thin lens transmission function∆0∆(x,y)()()()() ()()()()⎭⎬⎫⎩⎨⎧+⎟⎟⎠⎞⎜⎜⎝⎛−−−⎭⎬⎫⎩⎨⎧∆≈⎭⎬⎫⎩⎨⎧∆−+∆=⎟⎟⎠⎞⎜⎜⎝⎛−+−∆≈∆⎟⎟⎠⎞⎜⎜⎝⎛⎥⎦⎤⎢⎣⎡+−−+⎟⎟⎠⎞⎜⎜⎝⎛⎥⎦⎤⎢⎣⎡+−−−∆≈∆⎟⎟⎠⎞⎜⎜⎝⎛+−−+⎟⎟⎠⎞⎜⎜⎝⎛+−−−∆=∆21112exp2exp,,122exp,112,211211,1111,22210lens0lens21220222212210222212210yxRRniniyxayxniyxaRRyxyxRyxRRyxRyxRyxRRyxRyxλπλπλπλπMIT 2.71/2.710 Optics11/07/05 wk10-a-7The thin lens transmission function∆0∆(x,y)()()length focal theis 1111 whereexp2exp,21220lens⎟⎟⎠⎞⎜⎜⎝⎛−−≡⎭⎬⎫⎩⎨⎧+−⎭⎬⎫⎩⎨⎧∆≈RRnffyxiniyxaλπλπthis constant-phase term can be omittedMIT 2.71/2.710 Optics11/07/05 wk10-a-8Example: plane wave through lensplane wave: exp{i2πu0x}angle θ0, sp. freq. u0≈ θ0/λ()⎭⎬⎫⎩⎨⎧+−=fyxiyxaλπ22lensexp, lens,MIT 2.71/2.710 Optics11/07/05 wk10-a-9() { }(){}()⎭⎬⎫⎩⎨⎧+−−=⎭⎬⎫⎩⎨⎧+−=++fyfuxifuiyxafyxixuiyxaλλπλπλππ22020220expexp,exp2exp, :lensafter wavefront Example: plane wave through lensfuλ0ignorespherical wave,converging off–axisback focal planefMIT 2.71/2.710 Optics11/07/05 wk10-a-10Example: spherical wave through lens()()() { }⎭⎬⎫⎩⎨⎧+−∆=⎭⎬⎫⎩⎨⎧++⎭⎬⎫⎩⎨⎧=−fyxiniyxafyxxifiyxafλππλπλπ220lens220exp2exp,:functionion transmisslensexp2exp, :) distance propagated (has wavespherical0xspherical wave,diverging off–axisfront focal planefMIT 2.71/2.710 Optics11/07/05 wk10-a-11Example: spherical wave through lens() () ()⎭⎬⎫⎩⎨⎧++⎟⎠⎞⎜⎝⎛+∆=×=−+fxxifxifniyxayxayxaλπλπλπ0200lens22exp,,,lensafter wavefront ignorespherical wave,diverging off–axisfront focal planefx0 angleat ≈θplane wave0xMIT 2.71/2.710 Optics11/07/05 wk10-a-12Diffraction at the back focal planefzthintransparencyg(x,y)thinlensback focal planediffraction patterngf(x”,y”)xx’ x”MIT 2.71/2.710 Optics11/07/05 wk10-a-13Diffraction at the back focal planefzxx’ x”1D calculation1D calculation() ()()() ()() ()()xfxxixgxgfxixgxgxzxxixgxg′⎭⎬⎫⎩⎨⎧′−′′′=′′⎭⎬⎫⎩⎨⎧′−′=′⎭⎬⎫⎩⎨⎧−′=′∫∫+−+−d expexpd exp2lensf2lenslens2lensλπλπλπField before lensField after lensField at back f.p.g(x,y)gf(x”,y”)MIT 2.71/2.710 Optics11/07/05 wk10-a-14Diffraction at the back focal planefzxx’ x”1D calculation1D calculation() ()xfxxixgfzfxixg d 2exp 1exp 2f∫⎭⎬⎫⎩⎨⎧′′−⎭⎬⎫⎩⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛−′′=′′λπλπ() () d d2exp, 1exp ,22fyxfyyxxiyxgfzfyxiyxg∫∫⎭⎬⎫⎩⎨⎧′′+′′−⎭⎬⎫⎩⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛−′′+′′=′′′′λπλπ2D version2D versiong(x,y)gf(x”,y”)MIT 2.71/2.710 Optics11/07/05 wk10-a-15Diffraction at the back focal planefzxx’ x”() , 1exp , 22f⎟⎟⎠⎞⎜⎜⎝⎛′′′′⎭⎬⎫⎩⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛−′′+′′=′′′′∴fyfxGfzfyxiyxgλλλπ() () d d2exp, 1exp ,22fyxfyyxxiyxgfzfyxiyxg∫∫⎭⎬⎫⎩⎨⎧′′+′′−⎭⎬⎫⎩⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛−′′+′′=′′′′λπλπsphericalwave-frontg(x,y)gf(x”,y”)Fourier transformof g(x,y)MIT 2.71/2.710 Optics11/07/05 wk10-a-16Fraunhofer diffraction vis-á-vis a lensxyl→∞x´y´),(outyxg′′()yxg ,in()∫∫⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛′+⎟⎠⎞⎜⎝⎛′∝′′yxlyylxx-iyxglyxg dd2 exp, );,(inoutλλπxyfx´y´),(outyxg′′()yxg ,inf()∫∫⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛′+⎟⎟⎠⎞⎜⎜⎝⎛′∝′′yxfyyfxx-iyxgfyxg dd2 exp, );,(inoutλλπMIT 2.71/2.710 Optics11/07/05 wk10-a-17Spherical – plane wave dualityxyfx´y´),(outyxg′′()yxg ,in()∫∫⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡′⎟⎟⎠⎞⎜⎜⎝⎛−+′⎟⎟⎠⎞⎜⎜⎝⎛−∝′′yxyfyxfxiyxgyxg dd2 exp, ),(inoutλλπpoint source at (x,y)amplitude gin(x,y)⎟⎟⎠⎞⎜⎜⎝⎛−−fyfxλλ, towardsplane wave orientedeach output coordinate(x’,y’) receives ... ... a superposition ...... of plane wavescorresponding topoint sources in the objectMIT 2.71/2.710 Optics11/07/05 wk10-a-18Spherical – plane wave dualityxyfx´y´),(outyxg′′()yxg ,ina plane wave departingfrom the transparencyat angle (θx, θy) has amplitudeequal to the Fourier coefficientat frequency (θx/λ, θy /λ) of gin(x,y)() ()()ffffyxyxθθλλθλλθ,, towards =⎟⎟⎠⎞⎜⎜⎝⎛××produces a spherical wave converging()∫∫⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛′+⎟⎟⎠⎞⎜⎜⎝⎛′∝′′yxfyyfxx-iyxgyxg dd2 exp, ),(inoutλλπeach output coordinate(x’,y’) receives amplitude equalto that of the correspondingFourier componentMIT 2.71/2.710 Optics11/07/05 wk10-a-19Conclusions• When a thin


View Full Document

MIT 2 710 - The ideal thin lens

Download The ideal thin lens
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view The ideal thin lens and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view The ideal thin lens 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?