Unformatted text preview:

MIT 2.71/2.71010/12/05 wk6-b-1So far• Geometrical Optics– Reflection and refraction from planar and spherical interfaces– Imaging condition in the paraxial approximation– Apertures & stops– Aberrations (violations of the imaging condition due to terms oforder higher than paraxial or due to dispersion)• Limits of validity of geometrical optics: features of interest are much bigger than the wavelength λ– Problem: point objects/images are smaller than λ!!!– So light focusing at a single point is an artifact of our approximations– To understand light behavior at scales ~ λ we need to take into account the wave nature of light.MIT 2.71/2.71010/12/05 wk6-b-2Step #1 towards wave optics: electro-dynamics• Electromagnetic fields (definitions and properties) in vacuo• Electromagnetic fields in matter• Maxwell’s equations– Integral form– Differential form– Energy flux and the Poynting vector• The electromagnetic wave equationMIT 2.71/2.71010/12/05 wk6-b-3Electric and magnetic forces+ +rfree chargesCoulomb force2041rqq′=πεFqq´FdlFrII´rIIlπµ2dd0′=FMagnetic force(dielectric) permitivityof free space(magnetic) permeabilityof free spaceMIT 2.71/2.71010/12/05 wk6-b-4Note the units…20DistanceCharge1forceElectric⎟⎠⎞⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛ε2041rqq′=πεF20TimeChargeforceMagnetic⎟⎠⎞⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛µrIIlπµ2dd0′=F() ()SpeedTimeDistance2/100≡⎟⎠⎞⎜⎝⎛≡⇒µεMIT 2.71/2.71010/12/05 wk6-b-5Electric and magnetic fields+v⊗FBEelectricchargevelocityLorentzforceelectricfieldmagneticinduction()BvEF×+= qObservation Generation+Estatic charge:⇒electric fieldv++Belectric current(moving charges):⇒magnetic fieldqMIT 2.71/2.71010/12/05 wk6-b-6Gauss Law: electric fields+EdaE+∫∫ ∫∫∫=⋅AVVd 1d0ρεaEAVcharge density0ερ=⋅∇ EGauss theoremdaMIT 2.71/2.71010/12/05 wk6-b-7Gauss Law: magnetic fieldsBAV∫∫=⋅A0daB“magnetic charge” density0=⋅∇BGauss theoremthere are nomagneticchargesdaMIT 2.71/2.71010/12/05 wk6-b-8Faraday’s Law: electromotive forcedlEB(t) (in/de)creasing∫∫⋅−=⋅CAtl aBE ddddStokes theoremt∂∂−=×∇BECAMIT 2.71/2.71010/12/05 wk6-b-9Ampere’s Law: magnetic inductiondlBICA∫∫∫∫∫⎟⎟⎠⎞⎜⎜⎝⎛⋅∂∂+⋅=⋅CAAtl aEaJB ddd00εµcurrentcapacitordlBcurrent densityMaxwell’s extension,Displacement currentStokes theorem⎟⎠⎞⎜⎝⎛∂∂+=×∇tEJB00εµMIT 2.71/2.71010/12/05 wk6-b-10Maxwell’s equations∫∫ ∫∫∫=⋅AVVd 1d0ρεaE0ερ=⋅∇ E∫∫=⋅A0daB0=⋅∇ B∫∫⋅−=⋅CAtl aBE ddddt∂∂−=×∇BE∫∫∫⋅⎟⎠⎞⎜⎝⎛∂∂+=⋅CAtl aEJB dd00εµ⎟⎠⎞⎜⎝⎛∂∂+=×∇tEJB00εµGauss/electricGauss/magneticFaradayAmpere-Maxwell(in vacuo)MIT 2.71/2.71010/12/05 wk6-b-11Electric fields in dielectric media++++––––++++––––E−−++−=rrp qqatom in equilibriumatom under electric field:• charge neutrality is preserved• spatial distribution of chargesbecomes assymetric±±±–+–+–+–+–+–+–+–+–+–+–+–+Spatially variant polarizationinduces local charge imbalances(bound charges)P⋅−∇=boundρ∑= pPDipole momentPolarizationMIT 2.71/2.71010/12/05 wk6-b-12Electric displacementGauss Law:()boundfree0total011ρρερε+==⋅∇ E()P⋅∇−=free01ρε()free0ρε=+⋅∇PEPED+=0εElectric displacement field:freeρ=⋅∇DLinear, isotropic polarizability:EPχε0=()EEDεχε≡+=10MIT 2.71/2.71010/12/05 wk6-b-13General cases of polarizationLinear, isotropic polarizability:EPχε0=EPLinear, anisotropic polarizability:EP⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=3332312322211312110χχχχχχχχχεEPNonlinear, isotropic polarizability:...)2(00++= EEEPχεχεetc.MIT 2.71/2.71010/12/05 wk6-b-14Constitutive relationshipsE: electric fieldH: magnetic fieldD: electric displacementB: magnetic inductionPED+=0εpolarizationMBH −=0µmagnetizationMIT 2.71/2.71010/12/05 wk6-b-15Maxwell’s equations∫∫ ∫∫∫=⋅AVVd dfreeρaDfreeρ=⋅∇ D∫∫=⋅A0daB0=⋅∇ B∫∫⋅−=⋅CAtl aBE ddddt∂∂−=×∇BE∫∫∫⋅⎟⎠⎞⎜⎝⎛∂∂+=⋅CAtl aDJH ddfree0µ⎟⎠⎞⎜⎝⎛∂∂+=×∇tDJHfree0µGauss/electricGauss/magneticFaradayAmpere-Maxwell(in matter)MIT 2.71/2.71010/12/05 wk6-b-16Maxwell’s equations wave equation()0=⋅∇ Eε0=⋅∇ Bt∂∂−=×∇BE()t∂∂=×∇EBεµ0(in linear, anisotropic, non-magnetic matter, no free charges/currents)matter spatially andtemporally invariant0=⋅∇ E0=⋅∇ Bt∂∂−=×∇BEt∂∂=×∇EBεµ0()()220ttt ∂∂−=∂×∇∂−=×∇×∇⇒∂∂−=×∇EBEBEεµ()()EEE∇⋅∇−⋅∇∇=×∇×∇=002202=∂∂−∇tEEεµelectromagneticwave equationMIT 2.71/2.71010/12/05 wk6-b-17Maxwell’s equations wave equation(in linear, anisotropic, non-magnetic matter, no free charges/currents)02202=∂∂−∇tEEεµ0=⋅∇ E0=⋅∇ Bt∂∂−=×∇BEt∂∂=×∇EBεµ0201c≡εµwave velocity012222=∂∂−∇tcEEMIT 2.71/2.71010/12/05 wk6-b-18Light velocity and refractive index 12vacuum00c≡εµ()0201εεχεn≡+=22vacuum201ccn≡=εµn: index of refractioncvacuum: speed of lightin vacuumc≡cvacuum/n: speed of lightin medium of refr. index nMIT 2.71/2.71010/12/05 wk6-b-19Simplified (1D, scalar) wave equation0122222=∂∂−∂∂tEczE• E is a scalar quantity (e.g. the component Eyof an electric field E)• the geometry is symmetric in x, y ⇒ the x, yderivatives are zeroSolution:⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛−= tczgtczftzE ),(zztt+∆ttcz∆=∆0zzz∆+0⎟⎠⎞⎜⎝⎛−tczf0MIT 2.71/2.71010/12/05 wk6-b-20Special case: harmonic solutionλzzt=0t+∆t⎟⎠⎞⎜⎝⎛==λπzatzf 2cos)0,(()⎟⎟⎠⎞⎜⎜⎝⎛⎟⎠⎞⎜⎝⎛−≡⎟⎠⎞⎜⎝⎛−= tczactzatzfπνλπ2cos2cos),(λν=cdispersionrelationΦλπct2=∆ΦMIT 2.71/2.71010/12/05 wk6-b-21Complex representation of waves()() ( )() ( )()()()() (){}() ()()phasor""or amplitudecomplex etionrepresenta complex e,ˆ aka ,ˆ,ˆRe, i.e.sincos,ˆcos,2 ,2 cos, 22cos,φφωφωφωφωπνωλπφωφπνλπitkziAAtzftzftzftzftkziAtkzAtzftkzAtzfktkzAtzftzAtzf−−−==−−+−−=−−===−−=⎟⎠⎞⎜⎝⎛−−=wave-numberangular frequencyMIT 2.71/2.71010/12/05 wk6-b-22Time reversalz()uf()tkzfω−z()uf()tkzfω+MIT 2.71/2.71010/12/05 wk6-b-23Superpositionz()uf()tkzfω−()uf()tkzfω+()()tkzftkzfωω++−⇒is also a solutionMore generally,()()tkzgtkzfωω++−is a solutionEven more


View Full Document

MIT 2 710 - Geometrical Optics

Download Geometrical Optics
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Geometrical Optics and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Geometrical Optics 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?