Unformatted text preview:

MIT 2.71/2.710 Optics10/19/05 wk7-b-1Today’s summary• Energy / Poynting’s vector• Reflection and refraction at a dielectric interface:– wave approach to derive Snell’s law– reflection and transmission coefficients– total internal reflection (TIR) revisited• Two-beam interferenceMIT 2.71/2.710 Optics10/19/05 wk7-b-2EnergyMIT 2.71/2.710 Optics10/19/05 wk7-b-3The Poynting vectorEBSBEBES ×=×=0201εµcso in free spacekS ||S has units of W/m2so it representsenergy flux (energy perunit time & unit area)MIT 2.71/2.710 Optics10/19/05 wk7-b-4Poynting vector and phasors (I)20021ESEEBEkBBESεωωεcckc=⇒==⇒×=×=For example, sinusoidal field propagating along z()()tkzEctkzEωεω−=⇒−=22000coscosˆSxERecall: for visible light, ω~1014-1015HzMIT 2.71/2.710 Optics10/19/05 wk7-b-5Poynting vector and phasors (II)Recall: for visible light, ω~1014-1015HzSo any instrument will record the averageaverage incident energy flux∫+=TtttTd1SSwhere T is the period (T=λ/c) Sis called the irradianceirradiance, akaintensityintensityof the optical field (units: W/m2)MIT 2.71/2.710 Optics10/19/05 wk7-b-6Poynting vector and phasors (III)21d)(cos)(cos22=−=−∫+ttkztkzTttωω20021Ecε=SFor example: sinusoidal electric field,Then, at constant z:()()tkzEctkzEωεω−=⇒−=22000coscosˆSxEMIT 2.71/2.710 Optics10/19/05 wk7-b-7Relationship between E and BEBk()EkBkxEBErk×=⇒−≡∂∂×≡∇×⇒=∂∂−=×∇−⋅ωωω1 and eˆ where0itiEttiVectors k, E, B form aright-handed triad.Note:free space or isotropic media onlyMIT 2.71/2.710 Optics10/19/05 wk7-b-8Poynting vector and phasors (IV)Recall phasor representation:()()() ( ) ( ) e : phasor""or amplitudecomplex sincos,ˆ cos,φφωφωφωiAtkziAtkzAtzftkzAtzf−−−+−−=−−=Can we use phasors to compute intensity?MIT 2.71/2.710 Optics10/19/05 wk7-b-9Poynting vector and phasors (V)Consider the superposition oftwo two fields of the samesame frequency:()()() ( )φωω−−=−=tkzEtzEtkzEtzEcos,cos,202101()()φεεcos22...d 201022021002210EEEEctEETcTtt++==+=∫+SNow consider the two corresponding phasorsphasors:φiEE−e2010()φεεφcos22...e220102202100220100EEEEcEEci++==+−and the quantityMIT 2.71/2.710 Optics10/19/05 wk7-b-10Poynting vector and phasors (V)Consider the superposition oftwo two fields of the samesame frequency:()()() ( )φωω−−=−=tkzEtzEtkzEtzEcos,cos,202101()()φεεcos22...d 201022021002210EEEEctEETcTtt++==+=∫+SNow consider the two corresponding phasorsphasors:φiEE−e2010()φεεφcos22...e220102202100220100EEEEcEEci++==+−and the quantity= !!MIT 2.71/2.710 Optics10/19/05 wk7-b-11Poynting vector and irradianceSummarySummary200 ;1ESBESεµc=×=∫+=TtttTd1SSPoynting vectorIrradiance (or intensity)220phasor or phasor2∝= SSεc(free space or isotropic media)MIT 2.71/2.710 Optics10/19/05 wk7-b-12Reflection / RefractionFresnel coefficientsMIT 2.71/2.710 Optics10/19/05 wk7-b-13Reflection & transmission @ dielectric interfaceMIT 2.71/2.710 Optics10/19/05 wk7-b-14EikikiEiReflection & transmission @ dielectric interfaceMIT 2.71/2.710 Optics10/19/05 wk7-b-15Reflection & transmission @ dielectric interfaceI. Polarization normal to plane of incidenceI. Polarization normal to plane of incidence()[]()[]txykiEtiEiiiiiiiωθθω−+−==−⋅=)sincos(expˆ expˆ00zrkzEIncident electric field:()[]()[]txykiEtiErrirrrrωθθω−++==−⋅=)sincos(expˆ expˆ00zrkzEReflected electric field:()[]()[]txykiEtiEtttttttωθθω−+−==−⋅=)sincos(expˆ expˆ00zrkzETransmitted electric field:where:vacuumvacuum2 ,2λπλπttiinknk ==MIT 2.71/2.710 Optics10/19/05 wk7-b-16Reflection & transmission @ dielectric interfaceI. Polarization normal to plane of incidenceI. Polarization normal to plane of incidence()[]()[]()[]txykiEtxykiEtxykiEEEEttttrririiiitriωθθωθθωθθ−+−=−+++−+−⇒==+)sincos(exp )sincos(exp )sincos(expl)(tangentia l)(tangential)(tangentia000Continuity of tangential electric fieldat the interface:But at the interface y=0 so()[]()[]()[]txkiEtxkiEtxkiEtttririiiωθωθωθ−=−+−sinexp sinexp sinexp000MIT 2.71/2.710 Optics10/19/05 wk7-b-17Reflection & transmission @ dielectric interfaceI. Polarization normal to plane of incidenceI. Polarization normal to plane of incidenceContinuity of tangential electric fieldat the interface:()[]()[]()[]txkiEtxkiEtxkiEtttririiiωθωθωθ−=−+−sinexp sinexp sinexp000Since the exponents must be equalfor all x, we obtainttiittiirinnkkθλπθλπθθθθsin2sin2sinsinand vacuumvacuum=⇔==MIT 2.71/2.710 Optics10/19/05 wk7-b-18Reflection & transmission @ dielectric interfaceI. Polarization normal to plane of incidenceI. Polarization normal to plane of incidenceContinuity of tangential electric fieldat the interface: riθθ=ttiinnθθsinsin =law of reflectionSnell’s law of refractionso wave description is equivalentto Fermat’s principle!! ☺MIT 2.71/2.710 Optics10/19/05 wk7-b-19Reflection & transmission @ dielectric interfaceI. Polarization normal to plane of incidenceI. Polarization normal to plane of incidence()[]txykiEiiiiiωθθ−+−=)sincos(expˆ0zEIncident electric field:()[]txykiErrirrωθθ−++=)sincos(expˆ0zEReflected electric field:()[]txykiEtttttωθθ−+−=)sincos(exp0zETransmitted electric field:Need to calculate the reflected and transmitted amplitudes E0r, E0t i.e. need twotwo equationsMIT 2.71/2.710 Optics10/19/05 wk7-b-20Reflection & transmission @ dielectric interfaceI. Polarization normal to plane of incidenceI. Polarization normal to plane of incidenceContinuity of tangential electric fieldat the interface gives us one equation:()[]()[]()[]txkiEtxkiEtxkiEtttririiiωθωθωθ−=−+−sinexp sinexp sinexp000which after satisfying Snell’s law becomestriEEE000 =+MIT 2.71/2.710 Optics10/19/05 wk7-b-21Reflection & transmission @ dielectric interfaceI. Polarization normal to plane of incidenceI. Polarization normal to plane of incidencel)(tangentia l)(tangential)(tangentiatriBBB==+The second equation comes from continuity of tangential magnetic fieldat the interface:Recall0000cossinˆˆˆ11EkkθθωωzyxEkB=×=MIT 2.71/2.710 Optics10/19/05 wk7-b-22Reflection & transmission @ dielectric interfaceI. Polarization normal to plane of incidenceI. Polarization normal to plane of incidenceSo continuity of tangential magnetic field Bxat the interface y=0 becomes:tttrriiiitttrriiiiEnEnEnEkEkEkθθθθθθcoscoscoscoscoscos000000=−⇔=−MIT 2.71/2.710 Optics10/19/05 wk7-b-23Reflection & transmission @


View Full Document

MIT 2 710 - SUMMARY

Download SUMMARY
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view SUMMARY and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view SUMMARY 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?