DOC PREVIEW
CMU CS 10701 - Recitation

This preview shows page 1-2-23-24 out of 24 pages.

Save
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

10701 Recitation Suyash Shringarpure 11 8 2011 Plan Homework questions Lecture questions Bayesian networks D separation Variable elimination Message passing Junction trees Undirected graphs Bayesian networks E A B C D D separation A C T F A C B T F E A B A D B T F C B What What else D Factorized probabilty P A B C D E E A B Parameters Na ve Factorized C D Conditional probabilty tables A C P B 1 A P A 0 0 0 1 0 0 2 0 1 0 8 1 0 8 1 0 0 7 A 1 1 0 4 B D P E 1 0 0 0 7 0 1 0 5 1 0 0 1 E 1 1 0 4 B C D C P C B P D 1 0 0 9 0 0 8 1 0 1 1 0 1 Inference problem What is P E 1 A C P B 1 A P A 0 0 0 1 0 0 2 0 1 0 8 1 0 8 1 0 0 7 A 1 1 0 4 B D P E 1 0 0 0 7 0 1 0 5 1 0 0 1 E 1 1 0 4 B C D C P C B P D 1 0 0 9 0 0 8 1 0 1 1 0 1 Variable elimination Elimination of a variable Marginalizing out that variable from all factors that include that variable For example factors for B are E A B C D Variable elimination Initial factors f1 fn CPT P Node Parents Choose an elimination order IMPORTANT To eliminate X Collect all factors f1 fk that contain X Generate a new factor by marginalizing X g X j 1 k fj Add g to the factor set and repeat Example Order 1 A C D B P A B C D E P A P C P B C A P D B P E D B P E 1 A B C D P A B C D E 1 A B C D P A P C P B C A P D B P E 1 D B According to the order eliminate A first Elimination steps A B C D P A P C P B C A P D B P E 1 D B B C D P D B P E 1 D B P C A P A P B C A mA B C Contd B C D P D B P E 1 D B P C A P A P B C A B C D P D B P E 1 D B P C mA B C B D P D B P E 1 D B C P C mA B C mC B Contd B D P D B P E 1 D B C P C mA B C B D P D B P E 1 D B mC B B mC B D P D B P E 1 D B mD B Contd B mC B D P D B P E 1 D B B mC B mD B Answer Complexity Computing mY X1 Xn Additions Multiplications Elimination complexity depends on Order effects Worst order for the given graph E A B C D Message passing A two pass algorithm over the BN that answers multiple inference queries On trees elimination message passing Guaranteed converge and accuracy How about this graph E A B C D Message passing Loops are bad Messages travel forever In general Elimination Message passing on clique trees Example graph E A B C D Clique tree P A P C P B C A P D B P E 1 D B P D B P E 1 D B P C P A P B C A P D B P E 1 D B P C mA B C Eliminate A P D B P E 1 D B mC B Eliminate C mC B mD B E 1 Eliminate D mB E 1 Eliminate B P E 1 Cliques E BE BED BC ABC Tree Clique tree Cliques E BE BED BC ABC Tree Junction trees Maximal clique trees Edge between two cliques if they share variables Messages ensure consistency of marginals of common variables Complexity depends on clique size Result Marginals of each clique Junction tree example HMM Rightward message Leftward message Undirected graphs Junction tree algorithms work for undirected graphs as well To avoid loops we triangularize cycles If not run loopy belief propagation No guarantees Works often in practice Approx inference If P x is complex Replace by simpler Q x Criterion for choosing form of Q x Computational cost Criterion for choosing parameters of Q x Minimize KL Q P Simplest Q


View Full Document

CMU CS 10701 - Recitation

Documents in this Course
lecture

lecture

12 pages

lecture

lecture

17 pages

HMMs

HMMs

40 pages

lecture

lecture

15 pages

lecture

lecture

20 pages

Notes

Notes

10 pages

Notes

Notes

15 pages

Lecture

Lecture

22 pages

Lecture

Lecture

13 pages

Lecture

Lecture

24 pages

Lecture9

Lecture9

38 pages

lecture

lecture

26 pages

lecture

lecture

13 pages

Lecture

Lecture

5 pages

lecture

lecture

18 pages

lecture

lecture

22 pages

Boosting

Boosting

11 pages

lecture

lecture

16 pages

lecture

lecture

20 pages

Lecture

Lecture

20 pages

Lecture

Lecture

39 pages

Lecture

Lecture

14 pages

Lecture

Lecture

18 pages

Lecture

Lecture

13 pages

Exam

Exam

10 pages

Lecture

Lecture

27 pages

Lecture

Lecture

15 pages

Lecture

Lecture

24 pages

Lecture

Lecture

16 pages

Lecture

Lecture

23 pages

Lecture6

Lecture6

28 pages

Notes

Notes

34 pages

lecture

lecture

15 pages

Midterm

Midterm

11 pages

lecture

lecture

11 pages

lecture

lecture

23 pages

Boosting

Boosting

35 pages

Lecture

Lecture

49 pages

Lecture

Lecture

22 pages

Lecture

Lecture

16 pages

Lecture

Lecture

18 pages

Lecture

Lecture

35 pages

lecture

lecture

22 pages

lecture

lecture

24 pages

Midterm

Midterm

17 pages

exam

exam

15 pages

Lecture12

Lecture12

32 pages

lecture

lecture

19 pages

Lecture

Lecture

32 pages

boosting

boosting

11 pages

pca-mdps

pca-mdps

56 pages

bns

bns

45 pages

mdps

mdps

42 pages

svms

svms

10 pages

Notes

Notes

12 pages

lecture

lecture

42 pages

lecture

lecture

29 pages

lecture

lecture

15 pages

Lecture

Lecture

12 pages

Lecture

Lecture

24 pages

Lecture

Lecture

22 pages

Midterm

Midterm

5 pages

mdps-rl

mdps-rl

26 pages

Load more
Download Recitation
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Recitation and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Recitation and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?