DOC PREVIEW
CMU CS 10701 - Graphical Models meet Margin- based Learning

This preview shows page 1-2-3-21-22-23-43-44-45 out of 45 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 45 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 45 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 45 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 45 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 45 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 45 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 45 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 45 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 45 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 45 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Graphical Models meet Margin-based LearningNext few lecturesHandwriting RecognitionSupport Vector MachinesHandwriting Recognition 2Handwriting Recognition 2SVMs vs. MNsSVMs, MNs vs. M3NsChain Markov Net (aka CRF*)Chain Markov Net (aka CRF*)Max (Conditional) LikelihoodOCR ExampleMax Margin EstimationM3NsM3NsM3N DualDual = Probability DistributionFactored Dual VariablesFactored ObjectiveFactored ObjectiveFactored ConstraintsFactored DualFactored DualGeneralization BoundHandwriting RecognitionHypertext ClassificationM3NsOther possible max-margin learning problemsAssociative Markov networksMax-margin AMNs resultsSegmentation resultsMax-margin parsingPCFGDisulfide bonds: non-bipartite matchingScoring functionLearning to clusterLearning to cluster resultsLearning to optimizeConclusionAcknowledgementsMax-Margin Markov Networks, B. Taskar, C. Guestrin and D. Koller. Neural Information Processing Systems Conference (NIPS03), 2003. http://www.cs.berkeley.edu/~taskar/pubs/mmmn.psLearning Associative Markov Networks, B. Taskar, V. Chatalbashev and D. Koller. Twenty First International Conference on Machine Learning (ICML04), 2004.http://www.cs.berkeley.edu/~taskar/pubs/mmamn.psMax-Margin Parsing, B. Taskar, D. Klein, M. Collins, D. Koller and C. Manning. Empirical Methods in Natural Language Processing (EMNLP04), 2004. http://www.cs.berkeley.edu/~taskar/pubs/mmcfg.psGraphical Models meet Margin-based LearningMachine Learning – 10701/15781Carlos GuestrinCarnegie Mellon UniversityApril 13th, 2005Next few lectures Today – Advanced topic in graphical models Next week – learning to make decisions with reinforcement learning Week after – Dealing with very large datasets, active learning and BIG PICTUREHandwriting RecognitionCharacter recognition: kernel SVMszcbcacrrrrrrSupport Vector MachinesAdvantages: SVMHigh-dim learning (kernels)Generalization boundsHandwriting Recognition 2SVMs for sequences?brakeaaaaabrickbraceProblem: # of classes exponential in lengthbrarezzzzz.....Handwriting Recognition 2Graphical models: HMMs, MNsLinear in lengthSVMs vs. MNsAdvantages: SVM MNHigh-dim learning (kernels)Generalization boundsEfficiently exploit label correlationsSVMs, MNs vs. M3NsAdvantages: SVM MN M3NHigh-dim learning (kernels)Generalization boundsEfficiently exploit label correlationsChain Markov Net (aka CRF*)P(y|x) = Z(x)Πiφ(xi,yi) Πiφ(yi,yi+1)1φ(xi,yi) = exp{∑αwαfα(xi,yi)} φ(yi,yi+1)= exp{∑βwβfβ(yi,yi+1)} fβ(y,y’) = I(y=‘z’,y’=‘a’)a-z a-z a-z a-z a-zfα(x,y) = I(xp=1, y=‘z’)yx*Lafferty et al. 01Chain Markov Net (aka CRF*)Πiφ(xi,yi) = exp{∑αwα∑ifα(xi,yi)} Πiφ(yi,yi+1)= exp{∑βwβ∑ifβ(yi,yi+1)} P(y|x) = Z(x)Πiφ(xi,yi) Πiφ(yi,yi+1) 1= Z(x)exp{wTf(x,y)}1w = [… , wα, … , wβ, …]f(x,y) = [… , fα(x,y) , … , fβ(x,y), …]fβ(x,y) = #(y=‘z’,y’=‘a’)a-z a-z a-z a-z a-zyfα(x,y) = #(xp=1, y=‘z’)x*Lafferty et al. 01Max (Conditional) Likelihoodx1,t(x1)…xm,t(xm)DEstimation Classificationf(x,y)Don’t need to learn entire distribution!OCR Example We want:argmaxwordwTf(,word) = “brace” Equivalently:wTf(,“brace”) > wTf( ,“aaaaa”)wTf(,“brace”) > wTf( ,“aaaab”)…wTf(,“brace”) > wTf( ,“zzzzz”)a lot!Max Margin Estimation Goal: find w such thatwTf(x,t(x)) > wTf(x,y) x∈D y≠t(x)wT[f(x,t(x)) – f(x,y)] > 0 Maximize margin γ Gain over y grows with # of mistakes in y: ∆tx(y)∆t (“craze”) = 2 ∆t (“zzzzz”) = 5w>∆fx(y) > 0w>∆fx(y) ≥γA Aw>∆f (“craze”) ≥ 2γw>∆f (“zzzzz”) ≥ 5γ∆tx(y)M3Nsx1,t(x1)…xm,t(xm)DEstimation Classificationf(x,y)M3NsEstimationDual QuadraticProgramExponential sizePolynomial sizeFactored DualM3N Dualα (“craze”)w>∆f (“craze”) ≥ 2γα (“zzzzz”)w>∆f (“zzzzz”) ≥ 5γ Exponential number of variablesαx(y) represents a probability distribution Key insight from graphical models: Can use network structure to factorize distributionDual = Probability Distributionαx(y)carora.4b c a r e b r o r e b r o c e b r a c e crao.2.15.25.8.4.6.2.4.4.2Factored Dual Variables Introduce factored dual variables: Linear in the size of the network Rewrite dual using µ’s:maximize QuadraticObjective(µ)s.t. µ∈ ConsistentMarginals (linear constraints)Equivalent to original dual!Factored Objectiveb c a r e b r o r e b r o c eb r a c e αrcaocr.2.15.25.4.2.35.65.8.4.61b1e2 2 10 ∆tµFactored ObjectiveFactored Constraintsnormalizationnon-negativityIf network is a treeElse add clique tree constraintsnormalizationnon-negativityagreementtriangulationFactored Dual Objective is quadratic in network size Constraint set is exponential in tree-width Linear for sequences and trees Complexity same as inferenceand max likelihoodFactored Dual Kernel trick works! Node and edge potentials can use kernelsnodes ⇒edges ⇒Generalization BoundTheorem:with probability at least 1-δ.Training set per-label γ-errorTest set per-label error Distribution-free First per-label bound Dependence on L logarithmic vs. linear [Colllins 01]L= number of nodes and edgesHandwriting Recognition051015202530CRFsMC–SVMs M^3 netsTest error (average per-character)rawpixelsquadratickernelcubickernelLength: ~8 charsLetter: 16x8 pixels 10-fold Train/Test5000/50000 letters600/6000 words Models:Multiclass-SVMs*CRFsM3nets better45% error reduction over linear CRFs33% error reduction over multiclass SVMs*Crammer & Singer 01Named Entity Recognition Locate and classify named entities in sentences: 4 categories: organization, person, location, misc. e.g. “U.N. official Richard Butler heads for Baghdad”. CoNLL 03 data set (200K words train, 50K words test)848586878889909192Test F1CRFsM^3N LinearM^3N Quad32% error reduction over CRFsU.N.officialRichardheadsforBaghdadyi= org/per/loc/misc/nonef(yi, x) = […,I(yi=org, xi=“U.N.”),I(yi=per, xi=capitalized),I(yi=loc, xi=known city),…, ]yxButlerbetter05101520Test ErrorSVMs RMNS M^3NsHypertext Classification WebKB dataset Four CS department websites: 1300 pages/3500 links Classify each page: faculty, course, student, project, other Train on three universities/test on fourth53% error reduction over SVMs38% error reduction over RMNsrelaxed dual*Taskar et al 02betterloopy belief propagationM3NsBasic algorithm works for any low tree-width graphical


View Full Document

CMU CS 10701 - Graphical Models meet Margin- based Learning

Documents in this Course
lecture

lecture

12 pages

lecture

lecture

17 pages

HMMs

HMMs

40 pages

lecture

lecture

15 pages

lecture

lecture

20 pages

Notes

Notes

10 pages

Notes

Notes

15 pages

Lecture

Lecture

22 pages

Lecture

Lecture

13 pages

Lecture

Lecture

24 pages

Lecture9

Lecture9

38 pages

lecture

lecture

26 pages

lecture

lecture

13 pages

Lecture

Lecture

5 pages

lecture

lecture

18 pages

lecture

lecture

22 pages

Boosting

Boosting

11 pages

lecture

lecture

16 pages

lecture

lecture

20 pages

Lecture

Lecture

20 pages

Lecture

Lecture

39 pages

Lecture

Lecture

14 pages

Lecture

Lecture

18 pages

Lecture

Lecture

13 pages

Exam

Exam

10 pages

Lecture

Lecture

27 pages

Lecture

Lecture

15 pages

Lecture

Lecture

24 pages

Lecture

Lecture

16 pages

Lecture

Lecture

23 pages

Lecture6

Lecture6

28 pages

Notes

Notes

34 pages

lecture

lecture

15 pages

Midterm

Midterm

11 pages

lecture

lecture

11 pages

lecture

lecture

23 pages

Boosting

Boosting

35 pages

Lecture

Lecture

49 pages

Lecture

Lecture

22 pages

Lecture

Lecture

16 pages

Lecture

Lecture

18 pages

Lecture

Lecture

35 pages

lecture

lecture

22 pages

lecture

lecture

24 pages

Midterm

Midterm

17 pages

exam

exam

15 pages

Lecture12

Lecture12

32 pages

lecture

lecture

19 pages

Lecture

Lecture

32 pages

boosting

boosting

11 pages

pca-mdps

pca-mdps

56 pages

bns

bns

45 pages

mdps

mdps

42 pages

svms

svms

10 pages

Notes

Notes

12 pages

lecture

lecture

42 pages

lecture

lecture

29 pages

lecture

lecture

15 pages

Lecture

Lecture

12 pages

Lecture

Lecture

24 pages

Lecture

Lecture

22 pages

Midterm

Midterm

5 pages

mdps-rl

mdps-rl

26 pages

Load more
Download Graphical Models meet Margin- based Learning
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Graphical Models meet Margin- based Learning and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Graphical Models meet Margin- based Learning 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?