DOC PREVIEW
CMU CS 10701 - HMMs- HMMs

This preview shows page 1-2-3-20-21-40-41-42 out of 42 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 42 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

2005-2007 Carlos GuestrinHMMsMachine Learning – 10701/15781Carlos GuestrinCarnegie Mellon UniversityMarch 28th, 20072005-2007 Carlos GuestrinAdventures of our BN hero Compact representation for probability distributions Fast inference Fast learning But… Who are the most popular kids?1. Naïve Bayes2 and 3. Hidden Markov models (HMMs)Kalman Filters2005-2007 Carlos GuestrinHandwriting recognitionCharacter recognition, e.g., kernel SVMszcbcacrrrrrr2005-2007 Carlos GuestrinExample of a hidden Markov model (HMM)2005-2007 Carlos GuestrinUnderstanding the HMM SemanticsX1= {a,…z}O1= X5= {a,…z}X3= {a,…z} X4= {a,…z}X2= {a,…z}O2= O3= O4= O5=2005-2007 Carlos GuestrinHMMs semantics: DetailsX1= {a,…z}O1= X5= {a,…z}X3= {a,…z} X4= {a,…z}X2= {a,…z}O2= O3= O4= O5= Just 3 distributions:2005-2007 Carlos GuestrinHMMs semantics: Joint distributionX1= {a,…z}O1= X5= {a,…z}X3= {a,…z} X4= {a,…z}X2= {a,…z}O2= O3= O4= O5=2005-2007 Carlos GuestrinLearning HMMsfrom fully observable data is easyX1= {a,…z}O1= X5= {a,…z}X3= {a,…z} X4= {a,…z}X2= {a,…z}O2= O3= O4= O5= Learn 3 distributions:2005-2007 Carlos GuestrinPossible inference tasks in an HMMX1= {a,…z}O1= X5= {a,…z}X3= {a,…z} X4= {a,…z}X2= {a,…z}O2= O3= O4= O5= Marginal probability of a hidden variable:Viterbi decoding – most likely trajectory for hidden vars:2005-2007 Carlos GuestrinUsing variable elimination to compute P(Xi|o1:n)X1= {a,…z}O1= X5= {a,…z}X3= {a,…z} X4= {a,…z}X2= {a,…z}O2= O3= O4= O5= Variable elimination order?Compute:Example:2005-2007 Carlos GuestrinWhat if I want to compute P(Xi|o1:n) for each i?X1= {a,…z}O1= X5= {a,…z}X3= {a,…z} X4= {a,…z}X2= {a,…z}O2= O3= O4= O5= Variable elimination for each i?Compute:Variable elimination for each i, what’s the complexity?2005-2007 Carlos GuestrinReusing computationX1= {a,…z}O1= X5= {a,…z}X3= {a,…z} X4= {a,…z}X2= {a,…z}O2= O3= O4= O5= Compute:2005-2007 Carlos GuestrinThe forwards-backwards algorithmX1= {a,…z}O1= X5= {a,…z}X3= {a,…z} X4= {a,…z}X2= {a,…z}O2= O3= O4= O5=  Initialization:  For i = 2 to n Generate a forwards factor by eliminating Xi-1 Initialization:  For i = n-1 to 1 Generate a backwards factor by eliminating Xi+1 ∀ i, probability is:2005-2007 Carlos GuestrinMost likely explanationX1= {a,…z}O1= X5= {a,…z}X3= {a,…z} X4= {a,…z}X2= {a,…z}O2= O3= O4= O5= Variable elimination order?Compute:Example:2005-2007 Carlos GuestrinThe Viterbi algorithmX1= {a,…z}O1= X5= {a,…z}X3= {a,…z} X4= {a,…z}X2= {a,…z}O2= O3= O4= O5=  Initialization:  For i = 2 to n Generate a forwards factor by eliminating Xi-1 Computing best explanation:  For i = n-1 to 1 Use argmax to get explanation:2005-2007 Carlos GuestrinWhat you’ll implement 1: multiplication2005-2007 Carlos GuestrinWhat you’ll implement 2: max & argmax2005-2007 Carlos GuestrinHigher-order HMMsX1= {a,…z}O1= X5= {a,…z}X3= {a,…z} X4= {a,…z}X2= {a,…z}O2= O3= O4= O5= Add dependencies further back in time →→→→better representation, harder to learn2005-2007 Carlos GuestrinWhat you need to know Hidden Markov models (HMMs) Very useful, very powerful! Speech, OCR,… Parameter sharing, only learn 3 distributions Trick reduces inference from O(n2) to O(n) Special case of BN2005-2007 Carlos GuestrinBayesian Networks –(Structure) Learning Machine Learning – 10701/15781Carlos GuestrinCarnegie Mellon UniversityMarch 28th, 20072005-2007 Carlos GuestrinReview Bayesian Networks  Compact representation for probability distributions Exponential reduction in number of parameters Fast probabilistic inference using variable elimination Compute P(X|e) Time exponential in tree-width, not number of variables Today Learn BN structureFluAllergySinusHeadacheNose2005-2007 Carlos GuestrinLearning Bayes netsMissing dataFully observable dataUnknown structureKnown structurex(1)…x(m)Datastructure parametersCPTs –P(Xi| PaXi)2005-2007 Carlos GuestrinLearning the CPTsx(1)…x(m)DataFor each discrete variable Xi2005-2007 Carlos GuestrinInformation-theoretic interpretation of maximum likelihood Given structure, log likelihood of data:FluAllergySinusHeadacheNose2005-2007 Carlos GuestrinInformation-theoretic interpretation of maximum likelihood Given structure, log likelihood of data:FluAllergySinusHeadacheNose2005-2007 Carlos GuestrinInformation-theoretic interpretation of maximum likelihood 2 Given structure, log likelihood of data:FluAllergySinusHeadacheNose2005-2007 Carlos GuestrinDecomposable score Log data likelihood Decomposable score: Decomposes over families in BN (node and its parents) Will lead to significant computational efficiency!!! Score(G : D) = ∑iFamScore(Xi|PaXi: D)2005-2007 Carlos GuestrinHow many trees are there?Nonetheless – Efficient optimal algorithm finds best tree2005-2007 Carlos GuestrinScoring a tree 1: equivalent trees2005-2007 Carlos GuestrinScoring a tree 2: similar trees2005-2007 Carlos GuestrinChow-Liu tree learning algorithm 1  For each pair of variables Xi,Xj Compute empirical distribution: Compute mutual information: Define a graph Nodes X1,…,Xn Edge (i,j) gets weight2005-2007 Carlos GuestrinChow-Liu tree learning algorithm 2 Optimal tree BN Compute maximum weight spanning tree Directions in BN: pick any node as root, breadth-first-search defines directions2005-2007 Carlos GuestrinCan we extend Chow-Liu 1 Tree augmented naïve Bayes (TAN) [Friedman et al. ’97]  Naïve Bayes model overcounts, because correlation between features not considered Same as Chow-Liu, but score edges with:2005-2007 Carlos GuestrinCan we extend Chow-Liu 2 (Approximately learning) models with tree-width up to k [Narasimhan & Bilmes ’04] But, O(nk+1)… and more subtleties2005-2007 Carlos GuestrinWhat


View Full Document

CMU CS 10701 - HMMs- HMMs

Documents in this Course
lecture

lecture

12 pages

lecture

lecture

17 pages

HMMs

HMMs

40 pages

lecture

lecture

15 pages

lecture

lecture

20 pages

Notes

Notes

10 pages

Notes

Notes

15 pages

Lecture

Lecture

22 pages

Lecture

Lecture

13 pages

Lecture

Lecture

24 pages

Lecture9

Lecture9

38 pages

lecture

lecture

26 pages

lecture

lecture

13 pages

Lecture

Lecture

5 pages

lecture

lecture

18 pages

lecture

lecture

22 pages

Boosting

Boosting

11 pages

lecture

lecture

16 pages

lecture

lecture

20 pages

Lecture

Lecture

20 pages

Lecture

Lecture

39 pages

Lecture

Lecture

14 pages

Lecture

Lecture

18 pages

Lecture

Lecture

13 pages

Exam

Exam

10 pages

Lecture

Lecture

27 pages

Lecture

Lecture

15 pages

Lecture

Lecture

24 pages

Lecture

Lecture

16 pages

Lecture

Lecture

23 pages

Lecture6

Lecture6

28 pages

Notes

Notes

34 pages

lecture

lecture

15 pages

Midterm

Midterm

11 pages

lecture

lecture

11 pages

lecture

lecture

23 pages

Boosting

Boosting

35 pages

Lecture

Lecture

49 pages

Lecture

Lecture

22 pages

Lecture

Lecture

16 pages

Lecture

Lecture

18 pages

Lecture

Lecture

35 pages

lecture

lecture

22 pages

lecture

lecture

24 pages

Midterm

Midterm

17 pages

exam

exam

15 pages

Lecture12

Lecture12

32 pages

lecture

lecture

19 pages

Lecture

Lecture

32 pages

boosting

boosting

11 pages

pca-mdps

pca-mdps

56 pages

bns

bns

45 pages

mdps

mdps

42 pages

svms

svms

10 pages

Notes

Notes

12 pages

lecture

lecture

42 pages

lecture

lecture

29 pages

lecture

lecture

15 pages

Lecture

Lecture

12 pages

Lecture

Lecture

24 pages

Lecture

Lecture

22 pages

Midterm

Midterm

5 pages

mdps-rl

mdps-rl

26 pages

Load more
Download HMMs- HMMs
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view HMMs- HMMs and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view HMMs- HMMs 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?