DOC PREVIEW
CMU CS 10701 - Recitation: SVD and dimensionality reduction

This preview shows page 1-2-20-21 out of 21 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Slide 1SVDSVD: Mathematical BackgroundSVD: The mathematical formulationSVD - InterpretationSlide 6Slide 7Slide 8Dimensionality reductionSlide 10Slide 11Slide 12Slide 13Slide 14Slide 15Slide 16Slide 17Slide 18Another example-EigenfaceSlide 20Principal Components Analysis (PCA)Recitation:SVD and dimensionality reduction Zhenzhen KouThursday, April 21, 2005SVD•Intuition: find the axis that shows the greatest variation, and project all points into this axisf1e1e2f2SVD: Mathematical Background=Xm X nUm X rSr X rV’r X nxSkk X k Ukm X kVk’k X nThe reconstructed matrix Xk = Uk.Sk.Vk’ is the closest rank-k matrix to the original matrix R.XkSVD: The mathematical formulation•Let X be the M x N matrix of M N-dimensional points•SVD decomposition –X= U x Sx VT–U(M x M)•U is orthogonal: UTU = I•columns of U are the orthogonal eigenvectors of XXT•called the left singular vectors of X–V(N x N)•V is orthogonal: VTV = I •columns of V are the orthogonal eigenvectors of XTX•called the right singular vectors of X–S(M x N)•diagonal matrix consisting of r non-zero values in descending order•square root of the eigenvalues of XXT (or XTX)–r is the rank of the symmetric matrices•called the singular valuesSVD - InterpretationSVD - Interpretation•X = U S VT - example:1 1 1 0 02 2 2 0 01 1 1 0 05 5 5 0 00 0 0 2 20 0 0 3 30 0 0 1 10.18 00.36 00.18 00.90 00 0.530 0.800 0.27=9.64 00 5.29x0.58 0.58 0.58 0 00 0 0 0.71 0.71xv1SVD - Interpretation•X = U S VT - example:1 1 1 0 02 2 2 0 01 1 1 0 05 5 5 0 00 0 0 2 20 0 0 3 30 0 0 1 10.18 00.36 00.18 00.90 00 0.530 0.800 0.27=9.64 00 5.29x0.58 0.58 0.58 0 00 0 0 0.71 0.71xvariance (‘spread’) on the v1 axisSVD - Interpretation•X = U S VT - example:–U  gives the coordinates of the points in the projection axis1 1 1 0 02 2 2 0 01 1 1 0 05 5 5 0 00 0 0 2 20 0 0 3 30 0 0 1 10.18 00.36 00.18 00.90 00 0.530 0.800 0.27=9.64 00 5.29x0.58 0.58 0.58 0 00 0 0 0.71 0.71xDimensionality reduction•set the smallest eigenvalues to zero:1 1 1 0 02 2 2 0 01 1 1 0 05 5 5 0 00 0 0 2 20 0 0 3 30 0 0 1 10.18 00.36 00.18 00.90 00 0.530 0.800 0.27=9.64 00 5.29x0.58 0.58 0.58 0 00 0 0 0.71 0.71xDimensionality reduction1 1 1 0 02 2 2 0 01 1 1 0 05 5 5 0 00 0 0 2 20 0 0 3 30 0 0 1 10.18 00.36 00.18 00.90 00 0.530 0.800 0.27~9.64 00 0x0.58 0.58 0.58 0 00 0 0 0.71 0.71xDimensionality reduction1 1 1 0 02 2 2 0 01 1 1 0 05 5 5 0 00 0 0 2 20 0 0 3 30 0 0 1 10.18 00.36 00.18 00.90 00 0.530 0.800 0.27~9.64 00 0x0.58 0.58 0.58 0 00 0 0 0.71 0.71xDimensionality reduction1 1 1 0 02 2 2 0 01 1 1 0 05 5 5 0 00 0 0 2 20 0 0 3 30 0 0 1 10.180.360.180.90000~9.64x0.58 0.58 0.58 0 0xDimensionality reduction1 1 1 0 02 2 2 0 01 1 1 0 05 5 5 0 00 0 0 2 20 0 0 3 30 0 0 1 1~1 1 1 0 02 2 2 0 01 1 1 0 05 5 5 0 00 0 0 0 00 0 0 0 00 0 0 0 0Dimensionality reductionEquivalent:‘spectral decomposition’ of the matrix:1 1 1 0 02 2 2 0 01 1 1 0 05 5 5 0 00 0 0 2 20 0 0 3 30 0 0 1 10.18 00.36 00.18 00.90 00 0.530 0.800 0.27=9.64 00 5.29x0.58 0.58 0.58 0 00 0 0 0.71 0.71xDimensionality reductionEquivalent:‘spectral decomposition’ of the matrix:1 1 1 0 02 2 2 0 01 1 1 0 05 5 5 0 00 0 0 2 20 0 0 3 30 0 0 1 1=x xu1u212v1v2Dimensionality reduction‘spectral decomposition’ of the matrix:1 1 1 0 02 2 2 0 01 1 1 0 05 5 5 0 00 0 0 2 20 0 0 3 30 0 0 1 1=u11vT1u22vT2++...nmn x 11 x mr termsDimensionality reductionapproximation / dim. reduction:by keeping the first few terms (Q: how many?)1 1 1 0 02 2 2 0 01 1 1 0 05 5 5 0 00 0 0 2 20 0 0 3 30 0 0 1 1=u11vT1u22vT2++...nmassume: 1 >= 2 >= ...Dimensionality reductionA heuristic: keep 80-90% of ‘energy’ (= sum of squares of i ’s)1 1 1 0 02 2 2 0 01 1 1 0 05 5 5 0 00 0 0 2 20 0 0 3 30 0 0 1 1=u11vT1u22vT2++...nmassume: 1 >= 2 >= ...Another example-Eigenface•The PCA problem in HW5•Face data X•Eigenvectors associated with the first few large eigenvalues of XXT have face-like imagesDimensionality reduction•Matrix V in the SVD decomposition (X = USVT ) is used to transform the data.•XV (= US defines the transformed dataset.•For a new data element x, xV defines the transformed data. •Keeping the first k (k < n) dimensions, amounts to keeping only the first k columns of V.Principal Components Analysis (PCA)•Transfer the dataset to the center by subtracting the means: let matrix X be the result.•Compute the matrix XTX.•The covariance matrix except for constants.•Project the dataset along a subset of the eigenvectors of XTX.•Matrix V in the SVD decomposition (X= U S VT ) contains the eigenvectors of XTX.•Also known as K-L


View Full Document

CMU CS 10701 - Recitation: SVD and dimensionality reduction

Documents in this Course
lecture

lecture

12 pages

lecture

lecture

17 pages

HMMs

HMMs

40 pages

lecture

lecture

15 pages

lecture

lecture

20 pages

Notes

Notes

10 pages

Notes

Notes

15 pages

Lecture

Lecture

22 pages

Lecture

Lecture

13 pages

Lecture

Lecture

24 pages

Lecture9

Lecture9

38 pages

lecture

lecture

26 pages

lecture

lecture

13 pages

Lecture

Lecture

5 pages

lecture

lecture

18 pages

lecture

lecture

22 pages

Boosting

Boosting

11 pages

lecture

lecture

16 pages

lecture

lecture

20 pages

Lecture

Lecture

20 pages

Lecture

Lecture

39 pages

Lecture

Lecture

14 pages

Lecture

Lecture

18 pages

Lecture

Lecture

13 pages

Exam

Exam

10 pages

Lecture

Lecture

27 pages

Lecture

Lecture

15 pages

Lecture

Lecture

24 pages

Lecture

Lecture

16 pages

Lecture

Lecture

23 pages

Lecture6

Lecture6

28 pages

Notes

Notes

34 pages

lecture

lecture

15 pages

Midterm

Midterm

11 pages

lecture

lecture

11 pages

lecture

lecture

23 pages

Boosting

Boosting

35 pages

Lecture

Lecture

49 pages

Lecture

Lecture

22 pages

Lecture

Lecture

16 pages

Lecture

Lecture

18 pages

Lecture

Lecture

35 pages

lecture

lecture

22 pages

lecture

lecture

24 pages

Midterm

Midterm

17 pages

exam

exam

15 pages

Lecture12

Lecture12

32 pages

lecture

lecture

19 pages

Lecture

Lecture

32 pages

boosting

boosting

11 pages

pca-mdps

pca-mdps

56 pages

bns

bns

45 pages

mdps

mdps

42 pages

svms

svms

10 pages

Notes

Notes

12 pages

lecture

lecture

42 pages

lecture

lecture

29 pages

lecture

lecture

15 pages

Lecture

Lecture

12 pages

Lecture

Lecture

24 pages

Lecture

Lecture

22 pages

Midterm

Midterm

5 pages

mdps-rl

mdps-rl

26 pages

Load more
Download Recitation: SVD and dimensionality reduction
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Recitation: SVD and dimensionality reduction and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Recitation: SVD and dimensionality reduction 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?