DOC PREVIEW
CMU CS 10701 - Recitation

This preview shows page 1-2-3-4-5 out of 14 pages.

Save
View full document
Premium Document
Do you want full access? Go Premium and unlock all 14 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Bayes Classifier Linear Regression 10701 15781 Recitation January 29 2008 Parts of the slides are from previous years recitation and lecture notes and from Prof Andrew Moore s data mining tutorials Classification and Regression Classification Goal Learn the underlying function f X features Y class or category e g words spam or not spam Regression f X features Y continuous values e g GPA salary Supervised Classification How to find an unknown function f X Y features class or equivalently P Y X f x arg max k P Y k X x Classifier 1 Find P X Y P Y and use Bayes rule generative Find P Y X directly discriminative 2 Classification Learn P Y X 1 Bayes rule P Y X P X Y P Y P X P X Y P Y Learn P X Y P Y Generative classifier 2 Learn P Y X directly Discriminative to be covered later in class e g logistic regression Generative Classifier Bayes Classifier Learn P X Y P Y e g email classification problem 3 classes for Y spam not spam maybe 10 000 binary features for X Cash Rolex How many parameters do we have P Y P X Y Generative learning Na ve Bayes Introduce conditional independence P X1 X2 Y P X1 Y P X2 Y P Y X P X Y P Y P X for X Xi Xn P X1 Y P Xn Y P Y P X prodi P Xi Y P Y P X Learn P X1 Y P Xn Y P Y instead of learning P X1 Xn Y directly Na ve Bayes 3 classes for Y spam not spam maybe 10 000 binary features for X Cash Rolex Now how many parameters P Y P X Y fewer parameters simpler less likely to overfit Full Bayes vs Na ve Bayes P Y 1 X1 X2 0 1 XOR X1 X2 Y 1 0 1 0 1 1 1 1 0 0 0 0 Full Bayes P Y 1 P X1 X2 0 1 Y 1 Na ve Bayes P Y 1 P X1 X2 0 1 Y 1 Regression Prediction of continuous variables e g I want to predict salaries from GPA I can regress that Learn the mapping f X Y f x i hi x i Model is linear in the parameters some noise linear regression Assume Gaussian noise Learn MLE 1 parameter linear regression Normal linear regression Y X N 0 2 or equivalently Y N X 2 MLE MLE 2 Multivariate linear regression What if the inputs are vectors Write matrix X and Y x1 x11 x x x 2 21 x n xn1 x12 x22 xn 2 x1k y1 y x2 k y 2 xnk yn n data points k features for each data MLE X T X 1 X TY Constant term We may expect linear data that does not go through the origin Trick The constant term Regression another example Assume the following model to fit the data The model has one unknown parameter to be learned from data Y N log X 1 A maximum likelihood estimation of


View Full Document

CMU CS 10701 - Recitation

Documents in this Course
lecture

lecture

12 pages

lecture

lecture

17 pages

HMMs

HMMs

40 pages

lecture

lecture

15 pages

lecture

lecture

20 pages

Notes

Notes

10 pages

Notes

Notes

15 pages

Lecture

Lecture

22 pages

Lecture

Lecture

13 pages

Lecture

Lecture

24 pages

Lecture9

Lecture9

38 pages

lecture

lecture

26 pages

lecture

lecture

13 pages

Lecture

Lecture

5 pages

lecture

lecture

18 pages

lecture

lecture

22 pages

Boosting

Boosting

11 pages

lecture

lecture

16 pages

lecture

lecture

20 pages

Lecture

Lecture

20 pages

Lecture

Lecture

39 pages

Lecture

Lecture

14 pages

Lecture

Lecture

18 pages

Lecture

Lecture

13 pages

Exam

Exam

10 pages

Lecture

Lecture

27 pages

Lecture

Lecture

15 pages

Lecture

Lecture

24 pages

Lecture

Lecture

16 pages

Lecture

Lecture

23 pages

Lecture6

Lecture6

28 pages

Notes

Notes

34 pages

lecture

lecture

15 pages

Midterm

Midterm

11 pages

lecture

lecture

11 pages

lecture

lecture

23 pages

Boosting

Boosting

35 pages

Lecture

Lecture

49 pages

Lecture

Lecture

22 pages

Lecture

Lecture

16 pages

Lecture

Lecture

18 pages

Lecture

Lecture

35 pages

lecture

lecture

22 pages

lecture

lecture

24 pages

Midterm

Midterm

17 pages

exam

exam

15 pages

Lecture12

Lecture12

32 pages

lecture

lecture

19 pages

Lecture

Lecture

32 pages

boosting

boosting

11 pages

pca-mdps

pca-mdps

56 pages

bns

bns

45 pages

mdps

mdps

42 pages

svms

svms

10 pages

Notes

Notes

12 pages

lecture

lecture

42 pages

lecture

lecture

29 pages

lecture

lecture

15 pages

Lecture

Lecture

12 pages

Lecture

Lecture

24 pages

Lecture

Lecture

22 pages

Midterm

Midterm

5 pages

mdps-rl

mdps-rl

26 pages

Load more
Download Recitation
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Recitation and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Recitation and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?