DOC PREVIEW
UIUC MATH 241 - 15_09

This preview shows page 1-2-23-24 out of 24 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Copyright © Cengage Learning. All rights reserved. 15 Multiple IntegralsCopyright © Cengage Learning. All rights reserved. 15.9 Triple Integrals in Spherical Coordinates3 Triple Integrals in Spherical Coordinates Learning objectives: § convert between rectangular and spherical coordinates § evaluate triple integrals with spherical coordinates4 Spherical Coordinates5 Spherical Coordinates The spherical coordinates (ρ, θ, φ) of a point P in space are shown in Figure 1, where ρ = |OP | is the distance from the origin to P, θ is the same angle as in cylindrical coordinates, and φ is the angle between the positive z-axis and the line segment OP. The spherical coordinates of a point Figure 16 Spherical Coordinates Note that ρ ≥ 0 0 ≤ θ ≤ 2π 0 ≤ φ ≤ π The spherical coordinate system is especially useful in problems where there is symmetry about a point, and the origin is placed at this point.7 Spherical Coordinates For example, the sphere with center the origin and radius c has the simple equation ρ = c (see Figure 2); this is the reason for the name “spherical” coordinates. ρ = c, a sphere Figure 28 Spherical Coordinates The graph of the equation θ = c is a vertical half-plane (see Figure 3), and the equation φ = c represents a half-cone with the z-axis as its axis (see Figure 4). θ = c, a half-plane Figure 3 φ = c, a half-plane Figure 49 Spherical Coordinates The relationship between rectangular and spherical coordinates can be seen from Figure 5. From triangles OPQ and OPP ʹ′ we have z = ρ cos φ r = ρ sin φ Figure 510 Spherical Coordinates But x = r cos θ and y = r sin θ, so to convert from spherical to rectangular coordinates, we use the equations Also, the distance formula shows that We use this equation in converting from rectangular to spherical coordinates.11 Evaluating Triple Integrals with Spherical Coordinates12 Evaluating Triple Integrals with Spherical Coordinates In the spherical coordinate system the counterpart of a rectangular box is a spherical wedge E = {(ρ, θ, φ) | a ≤ ρ ≤ b, α ≤ θ ≤ β, c ≤ φ ≤ d } where a ≥ 0 and β – α ≤ 2π, and d – c ≤ π. Although we defined triple integrals by dividing solids into small boxes, it can be shown that dividing a solid into small spherical wedges always gives the same result. So we divide E into smaller spherical wedges Eijk by means of equally spaced spheres ρ = ρi, half-planes θ = θj, and half-cones φ = φk.13 Evaluating Triple Integrals with Spherical Coordinates Figure 7 shows that Eijk is approximately a rectangular box with dimensions Δρ, ρi Δ φ (arc of a circle with radius ρi, angle Δφ), and ρi sin φk Δ θ (arc of a circle with radius ρi sin φk, angle Δθ ). Figure 714 Evaluating Triple Integrals with Spherical Coordinates So an approximation to the volume of Eijk is given by ΔVijk ≈ (Δρ)(ρi Δφ)(ρi sin φk Δθ) = sin φk Δρ Δθ Δφ In fact, it can be shown, with the aid of the Mean Value Theorem that the volume of Eijk is given exactly by ΔVijk = sin φk Δρ Δθ Δφ where (ρi, θj, φk) is some point in Eijk.15 Evaluating Triple Integrals with Spherical Coordinates Let (xijk, yijk, zijk) be the rectangular coordinates of this point. Then16 Evaluating Triple Integrals with Spherical Coordinates But this sum is a Riemann sum for the function F(ρ, θ, φ ) = f (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ ) ρ 2 sin φ Consequently, we have arrived at the following formula for triple integration in spherical coordinates.17 Evaluating Triple Integrals with Spherical Coordinates Formula 3 says that we convert a triple integral from rectangular coordinates to spherical coordinates by writing x = ρ sin φ cos θ y = ρ sin φ sin θ z = ρ cos φ using the appropriate limits of integration, and replacing dv by ρ 2 sin φ dρ dθ dφ.18 Evaluating Triple Integrals with Spherical Coordinates This is illustrated in Figure 8. Volume element in spherical coordinates: dV = ρ 2 sin φ dρ dθ dφ Figure 819 Evaluating Triple Integrals with Spherical Coordinates This formula can be extended to include more general spherical regions such as E = {(ρ, θ, φ) | α ≤ θ ≤ β, c ≤ φ ≤ d, g1(θ, φ) ≤ ρ ≤ g2(θ, φ)} In this case the formula is the same as in except that the limits of integration for ρ are g1(θ, φ ) and g2(θ, φ ). Usually, spherical coordinates are used in triple integrals when surfaces such as cones and spheres form the boundary of the region of integration.20 Example Use spherical coordinates to find the volume of the solid that lies above the cone and below the sphere x2 + y2 + z2 = z. (See Figure 9.) Figure 921 Example – Solution Notice that the sphere passes through the origin and has center (0, 0, ). We write the equation of the sphere in spherical coordinates as ρ 2 = ρ cos φ or ρ = cos φ The equation of the cone can be written as22 Example – Solution This gives sin φ = cos φ, or φ = π /4. Therefore the description of the solid E in spherical coordinates is E = {(ρ, θ, φ) | 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π/4, 0 ≤ ρ ≤ cos φ} continued23 Example – Solution Figure 11 shows how E is swept out if we integrate first with respect to ρ, then φ, and then θ. Figure 11 φ varies from 0 to π /4 while θ is constant. ρ varies from 0 to cos φ while φ and θ are constant. θ varies from 0 to 2π . continued24 Example – Solution The volume of E is


View Full Document

UIUC MATH 241 - 15_09

Documents in this Course
Notes

Notes

9 pages

16_05

16_05

29 pages

16.6

16.6

43 pages

16_07

16_07

34 pages

16_08

16_08

12 pages

16_09

16_09

13 pages

exam1

exam1

10 pages

exam2

exam2

7 pages

exam3

exam3

9 pages

15_03

15_03

15 pages

15_04

15_04

13 pages

15_04 (1)

15_04 (1)

13 pages

15_05

15_05

31 pages

15_10

15_10

27 pages

15_07

15_07

25 pages

15_08

15_08

12 pages

15_10_B

15_10_B

8 pages

16_04

16_04

17 pages

14_01

14_01

28 pages

12_06

12_06

12 pages

12_05

12_05

19 pages

12_04

12_04

26 pages

Lecture1

Lecture1

31 pages

Lecture 9

Lecture 9

41 pages

Lecture 8

Lecture 8

35 pages

Lecture 7

Lecture 7

40 pages

Lecture 6

Lecture 6

49 pages

Lecture 5

Lecture 5

26 pages

Lecture 4

Lecture 4

43 pages

Lecture 3

Lecture 3

29 pages

Lecture 2

Lecture 2

17 pages

m2-1

m2-1

6 pages

-

-

5 pages

Load more
Download 15_09
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view 15_09 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view 15_09 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?