DOC PREVIEW
UIUC MATH 241 - Lecture21214

This preview shows page 1-2-3-19-20-39-40-41 out of 41 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 41 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 41 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 41 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 41 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 41 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 41 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 41 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 41 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 41 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Chain Rule (§14.5)Directional Derivatives (§14.6)Gradient (§14.6)Math 241, Spring 2014Math 241, Spring 2014Jayadev S. AthreyaSpring 2014Math 241, Spring 2014Chain Rule (§14.5)Derivatives along curvesSuppose we have a parametric curve (x(t), y(t)) ∈ R2, and afunction f : R2→ R. We can make the functionh(t) = f (x(t), y(t)).How do we compute h0(t)?Math 241, Spring 2014Chain Rule (§14.5)One-variable chain ruleh(t) = f (x(t)), thenh0(t) = f0(x(t))x0(t)Math 241, Spring 2014Chain Rule (§14.5)Chain ruleh0(t) = fx(x(t), y(t))x0(t) + fy(x(t), y(t))y0(t)Math 241, Spring 2014Chain Rule (§14.5)How do we get to this?A linear approximation to f near (a , b) can be written as:∆f ≈ fx(a, b)∆x + fy(a, b)∆y∆f = f (x, y) − f (a, b), ∆x = x − a, ∆y = y − bMath 241, Spring 2014Chain Rule (§14.5)Approximating hh(t + ∆t) ≈ h(t) + h0(t)∆th(t + ∆t) = f (x(t + ∆t), y(t + ∆t))x(t + ∆t) ≈ x(t) + x0(t)∆t, y(t + ∆t) ≈ y(t) + y0(t)∆tMath 241, Spring 2014Chain Rule (§14.5)Combining Approximationsh(t+∆t) = f (x(t+∆t), y(t+∆t)) ≈ f (x(t)+x0(t)∆t, y(t)+y0(t)∆t)h(t + ∆t) − h(t) ≈ f (x(t) + x0(t)∆t, y(t) + y0(t)∆t) − f (x(t), y(t))≈ fx(x(t), y(t))(x0(t)∆t) + fy(x(t), y(t))(y0(t)∆t)= ∆t(fx(x(t), y(t))x0(t) + fy(x(t), y(t))y0(t))Math 241, Spring 2014Chain Rule (§14.5)Combining Approximationsh(t+∆t) = f (x(t+∆t), y(t+∆t)) ≈ f (x(t)+x0(t)∆t, y(t)+y0(t)∆t)h(t + ∆t) − h(t) ≈ f (x(t) + x0(t)∆t, y(t) + y0(t)∆t) − f (x(t), y(t))≈ fx(x(t), y(t))(x0(t)∆t) + fy(x(t), y(t))(y0(t)∆t)= ∆t(fx(x(t), y(t))x0(t) + fy(x(t), y(t))y0(t))Math 241, Spring 2014Chain Rule (§14.5)Combining Approximationsh(t+∆t) = f (x(t+∆t), y(t+∆t)) ≈ f (x(t)+x0(t)∆t, y(t)+y0(t)∆t)h(t + ∆t) − h(t) ≈ f (x(t) + x0(t)∆t, y(t) + y0(t)∆t) − f (x(t), y(t))≈ fx(x(t), y(t))(x0(t)∆t) + fy(x(t), y(t))(y0(t)∆t)= ∆t(fx(x(t), y(t))x0(t) + fy(x(t), y(t))y0(t))Math 241, Spring 2014Chain Rule (§14.5)Combining Approximationsh(t+∆t) = f (x(t+∆t), y(t+∆t)) ≈ f (x(t)+x0(t)∆t, y(t)+y0(t)∆t)h(t + ∆t) − h(t) ≈ f (x(t) + x0(t)∆t, y(t) + y0(t)∆t) − f (x(t), y(t))≈ fx(x(t), y(t))(x0(t)∆t) + fy(x(t), y(t))(y0(t)∆t)= ∆t(fx(x(t), y(t))x0(t) + fy(x(t), y(t))y0(t))Math 241, Spring 2014Chain Rule (§14.5)Notationz = f (x, y ), x = x(t), y = y(t)dzdt=∂z∂xdxdt+∂z∂ydydtMath 241, Spring 2014Chain Rule (§14.5)ExampleMath 241, Spring 2014Chain Rule (§14.5)Higher dimensionsChain rule works in any dimension: f : Rn→ R,x1, . . . , xn: R → R,h(t) = f (x1(t), . . . xn(t)) = f (x(t)),h0(t) = fx1(x(t))x01(t) + . . . fxn(x(t))x0n(t).Math 241, Spring 2014Chain Rule (§14.5)Higher dimensionsChain rule works in any dimension: f : Rn→ R,x1, . . . , xn: R → R,h(t) = f (x1(t), . . . xn(t)) = f (x(t)),h0(t) = fx1(x(t))x01(t) + . . . fxn(x(t))x0n(t).Math 241, Spring 2014Chain Rule (§14.5)Higher dimensional inputsx = x(u, v), y = y(u, v ), z = z(x, y) = z(x(u, v ), y(u, v)) Then∂z∂u=∂z∂x∂x∂u+∂z∂y∂y∂u∂z∂v=∂z∂x∂x∂v+∂z∂y∂y∂vPartial derivatives reduce this to case of 1-variable inputs.Math 241, Spring 2014Chain Rule (§14.5)Geometric examplez = z(x, y ) = x2+ y2, x = x(r , θ) = r cos θ, y = y(r, θ) = r sin θ∂z∂θ=∂z∂x∂x∂θ+∂z∂y∂y∂θ= 2x(−r sin θ) + 2y(r cos θ)= 2r cos θ(−r sin θ) + 2r sin θ(r cos θ) = 0Math 241, Spring 2014Chain Rule (§14.5)Geometric examplez = z(x, y ) = x2+ y2, x = x(r , θ) = r cos θ, y = y(r , θ) = r sin θ∂z∂θ=∂z∂x∂x∂θ+∂z∂y∂y∂θ= 2x(−r sin θ) + 2y(r cos θ)= 2r cos θ(−r sin θ) + 2r sin θ(r cos θ) = 0Math 241, Spring 2014Chain Rule (§14.5)Geometric examplez = z(x, y ) = x2+ y2, x = x(r , θ) = r cos θ, y = y(r , θ) = r sin θ∂z∂θ=∂z∂x∂x∂θ+∂z∂y∂y∂θ= 2x(−r sin θ) + 2y(r cos θ)= 2r cos θ(−r sin θ) + 2r sin θ(r cos θ) = 0Math 241, Spring 2014Chain Rule (§14.5)Geometric examplez = z(x, y ) = x2+ y2, x = x(r , θ) = r cos θ, y = y(r , θ) = r sin θ∂z∂r=∂z∂x∂x∂r+∂z∂y∂y∂r= 2x(cos θ) + 2y(sin θ)= 2r cos θ(cos θ) + 2r sin θ(sin θ) = 2r(sin2θ + cos2θ) = 2rMath 241, Spring 2014Chain Rule (§14.5)Geometric examplez = z(x, y ) = x2+ y2, x = x(r , θ) = r cos θ, y = y(r , θ) = r sin θ∂z∂r=∂z∂x∂x∂r+∂z∂y∂y∂r= 2x(cos θ) + 2y(sin θ)= 2r cos θ(cos θ) + 2r sin θ(sin θ) = 2r(sin2θ + cos2θ) = 2rMath 241, Spring 2014Chain Rule (§14.5)Geometric examplez = z(x, y ) = x2+ y2, x = x(r , θ) = r cos θ, y = y(r , θ) = r sin θ∂z∂r=∂z∂x∂x∂r+∂z∂y∂y∂r= 2x(cos θ) + 2y(sin θ)= 2r cos θ(cos θ) + 2r sin θ(sin θ) = 2r(sin2θ + cos2θ) = 2rMath 241, Spring 2014Directional Derivatives (§14.6)Other directionsPartial derivatives are rates of change along lines parallel to thex and y-axes. What about other lines?Math 241, Spring 2014Directional Derivatives (§14.6)Lines through (a, b)A line through (a, b) in direction v = (v1, v2) is given byx(t) = a + v1t, y(t) = b + v2th(t) = f (x(t), y (t))(Dvf )(a, b) = h0(0)Math 241, Spring 2014Directional Derivatives (§14.6)Applying Chain Rulex(t) = a + v1t, y(t) = b + v2th(t) = f (x(t), y (t))h0(0) = fx(a, b)x0(0) + fy(a, b)y0(0) = v1fx(a, b) + v2fy(a, b)(Dvf )(a, b) = v · (fx(a, b), fy(a, b))Math 241, Spring 2014Gradient (§14.6)The GradientGiven f : R2→ R, we define the gradient ∇f of f by∇f (a, b) = (fx(a, b), fy(a, b)) = fx(a, b)i + fy(a, b)j(Dvf )(a, b) = v · ∇f (a, b)Math 241, Spring 2014Gradient (§14.6)The GradientGiven f : R2→ R, we define the gradient ∇f of f by∇f (a, b) = (fx(a, b), fy(a, b)) = fx(a, b)i + fy(a, b)j(Dvf )(a, b) = v · ∇f (a, b)Math 241, Spring 2014Gradient (§14.6)Three dimensionsFor f : R3→ R,∇f (a, b, c) = (fx(a, b, c), fy(a, b, c), fz(a, b, c))= fx(a, b, c)i + fy(a, b, c)j + fz(a, b, c)kFor v ∈ R3(Dvf )(a, b, c) = v · ∇f (a, b, c)Math 241, Spring 2014Gradient (§14.6)Three dimensionsFor f : R3→ R,∇f (a, b, c) = (fx(a, b, c), fy(a, b, c), fz(a, b, c))= fx(a, b, c)i + fy(a, b, c)j + fz(a, b, c)kFor v ∈ R3(Dvf )(a, b, c) = v · ∇f (a, b, c)Math 241, Spring 2014Gradient (§14.6)n-dimensionsFor f : Rn→ R,∇f (x) = (fx1(x), fx2(x), . . . , fxn(x))For v ∈ Rn(Dvf )(x) = v · ∇f (x)Math 241, Spring 2014Gradient (§14.6)n-dimensionsFor f : Rn→ R,∇f (x) = (fx1(x), fx2(x), . . . , fxn(x))For v ∈ Rn(Dvf )(x) = v · ∇f (x)Math 241, Spring 2014Gradient (§14.6)Rates of changeQuestionIn what


View Full Document

UIUC MATH 241 - Lecture21214

Documents in this Course
Notes

Notes

9 pages

16_05

16_05

29 pages

16.6

16.6

43 pages

16_07

16_07

34 pages

16_08

16_08

12 pages

16_09

16_09

13 pages

exam1

exam1

10 pages

exam2

exam2

7 pages

exam3

exam3

9 pages

15_03

15_03

15 pages

15_04

15_04

13 pages

15_04 (1)

15_04 (1)

13 pages

15_05

15_05

31 pages

15_10

15_10

27 pages

15_07

15_07

25 pages

15_08

15_08

12 pages

15_09

15_09

24 pages

15_10_B

15_10_B

8 pages

16_04

16_04

17 pages

14_01

14_01

28 pages

12_06

12_06

12 pages

12_05

12_05

19 pages

12_04

12_04

26 pages

Lecture1

Lecture1

31 pages

Lecture 9

Lecture 9

41 pages

Lecture 8

Lecture 8

35 pages

Lecture 7

Lecture 7

40 pages

Lecture 6

Lecture 6

49 pages

Lecture 5

Lecture 5

26 pages

Lecture 4

Lecture 4

43 pages

Lecture 3

Lecture 3

29 pages

Lecture 2

Lecture 2

17 pages

m2-1

m2-1

6 pages

-

-

5 pages

Load more
Download Lecture21214
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture21214 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture21214 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?