DOC PREVIEW
CMU CS 10701 - Lecture

This preview shows page 1-2-3-4 out of 13 pages.

Save
View full document
Premium Document
Do you want full access? Go Premium and unlock all 13 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Machine Learning 10 701 Tom M Mitchell Machine Learning Department Carnegie Mellon University February 15 2011 Today Readings Required Bishop chapter 8 through 8 2 Graphical models Inference Conditional independence and D separation Learning from fully labeled data Bayesian Networks Definition A Bayes network represents the joint probability distribution over a collection of random variables A Bayes network is a directed acyclic graph and a set of CPD s Each node denotes a random variable Edges denote dependencies CPD for each node Xi defines P Xi Pa Xi The joint distribution over all variables is defined as Pa X immediate parents of X in the graph 1 Inference in Bayes Nets In general intractable NP complete For certain cases tractable Assigning probability to fully observed set of variables Or if just one variable unobserved Or for singly connected graphs ie no undirected loops Belief propagation For multiply connected graphs Junction tree Sometimes use Monte Carlo methods Generate many samples according to the Bayes Net distribution then count up the results Variational methods for tractable approximate solutions Example Bird flu and Allegies both cause Sinus problems Sinus problems cause Headaches and runny Nose 2 Prob of joint assignment easy Suppose we are interested in joint assignment F f A a S s H h N n What is P f a s h n let s use p a b as shorthand for p A a B b Prob of marginals not so easy How do we calculate P N n let s use p a b as shorthand for p A a B b 3 Generating a sample from joint distribution easy How can we generate random samples drawn according to P F A S H N let s use p a b as shorthand for p A a B b Generating a sample from joint distribution easy Note we can estimate marginals like P N n by generating many samples from joint distribution by summing the probability mass for which N n Similarly for anything else we care about P F 1 H 1 N 0 weak but general method for estimating any probability term let s use p a b as shorthand for p A a B b 4 Prob of marginals not so easy But sometimes the structure of the network allows us to be clever avoid exponential work eg chain A B C D E Prob of marginals not so easy But sometimes the structure of the network allows us to be clever avoid exponential work eg chain A B C D E 5 Inference in Bayes Nets In general intractable NP complete For certain cases tractable Assigning probability to fully observed set of variables Or if just one variable unobserved Or for singly connected graphs ie no undirected loops Variable elimination Belief propagation For multiply connected graphs Junction tree Sometimes use Monte Carlo methods Generate many samples according to the Bayes Net distribution then count up the results Variational methods for tractable approximate solutions Conditional Independence Revisited We said Each node is conditionally independent of its non descendents given its immediate parents Does this rule give us all of the conditional independence relations implied by the Bayes network No E g X1 and X4 are conditionally indep given X2 X3 But X1 and X4 not conditionally indep given X3 For this we need to understand D separation X1 X4 X2 X3 6 Inference in Bayes Nets In general intractable NP complete For certain cases tractable Assigning probability to fully observed set of variables Or if just one variable unobserved Or for singly connected graphs ie no undirected loops Variable elimination Belief propagation For multiply connected graphs Junction tree Sometimes use Monte Carlo methods Generate many samples according to the Bayes Net distribution then count up the results Variational methods for tractable approximate solutions Conditional Independence Revisited We said Each node is conditionally independent of its non descendents given its immediate parents Does this rule give us all of the conditional independence relations implied by the Bayes network No E g X1 and X4 are conditionally indep given X2 X3 But X1 and X4 not conditionally indep given X3 For this we need to understand D separation X1 X4 X2 X3 7 Easy Network 1 Head to Tail A prove A cond indep of B given C ie p a b c p a c p b c C B let s use p a b as shorthand for p A a B b Easy Network 2 Tail to Tail prove A cond indep of B given C A ie p a b c p a c p b c C B let s use p a b as shorthand for p A a B b 8 Easy Network 3 Head to Head prove A cond indep of B given C A ie p a b c p a c p b c C B let s use p a b as shorthand for p A a B b Easy Network 3 Head to Head prove A cond indep of B given C A NO Summary p a b p a p b p a b c NotEqual p a c p b c C B Explaining away e g A earthquake B breakIn C motionAlarm 9 X and Y are conditionally independent given Z if and only if X and Y are D separated by Z Bishop 8 2 2 Suppose we have three sets of random variables X Y and Z X and Y are D separated by Z and therefore conditionally indep given Z iff every path from any variable in X to any variable in Y is blocked A path from variable A to variable B is blocked if it includes a node such that either 1 arrows on the path meet either head to tail or tail to tail at the node and this node is in Z 2 the arrows meet head to head at the node and neither the node nor any of its descendants is in Z X and Y are D separated by Z and therefore conditionally indep given Z iff every path from any variable in X to any variable in Y is blocked A path from variable A to variable B is blocked if it includes a node such that either 1 arrows on the path meet either head to tail or tail to tail at the node and this node is in Z 2 the arrows meet head to head at the node and neither the node nor any of its descendants is in Z X1 indep of X3 given X2 X1 X3 indep of X1 given X2 X4 indep of X1 given X2 X4 X2 X3 10 X and Y are D separated by Z and therefore conditionally indep given Z iff every path from any variable in X to any variable in Y is blocked by Z A path from variable A to variable B is blocked by Z if it includes a node such that either 1 arrows on the path meet either head to tail or tail to tail at the node and this node is in Z 2 the …


View Full Document

CMU CS 10701 - Lecture

Documents in this Course
lecture

lecture

12 pages

lecture

lecture

17 pages

HMMs

HMMs

40 pages

lecture

lecture

15 pages

lecture

lecture

20 pages

Notes

Notes

10 pages

Notes

Notes

15 pages

Lecture

Lecture

22 pages

Lecture

Lecture

24 pages

Lecture9

Lecture9

38 pages

lecture

lecture

26 pages

lecture

lecture

13 pages

Lecture

Lecture

5 pages

lecture

lecture

18 pages

lecture

lecture

22 pages

Boosting

Boosting

11 pages

lecture

lecture

16 pages

lecture

lecture

20 pages

Lecture

Lecture

20 pages

Lecture

Lecture

39 pages

Lecture

Lecture

14 pages

Lecture

Lecture

18 pages

Lecture

Lecture

13 pages

Exam

Exam

10 pages

Lecture

Lecture

27 pages

Lecture

Lecture

15 pages

Lecture

Lecture

24 pages

Lecture

Lecture

16 pages

Lecture

Lecture

23 pages

Lecture6

Lecture6

28 pages

Notes

Notes

34 pages

lecture

lecture

15 pages

Midterm

Midterm

11 pages

lecture

lecture

11 pages

lecture

lecture

23 pages

Boosting

Boosting

35 pages

Lecture

Lecture

49 pages

Lecture

Lecture

22 pages

Lecture

Lecture

16 pages

Lecture

Lecture

18 pages

Lecture

Lecture

35 pages

lecture

lecture

22 pages

lecture

lecture

24 pages

Midterm

Midterm

17 pages

exam

exam

15 pages

Lecture12

Lecture12

32 pages

lecture

lecture

19 pages

Lecture

Lecture

32 pages

boosting

boosting

11 pages

pca-mdps

pca-mdps

56 pages

bns

bns

45 pages

mdps

mdps

42 pages

svms

svms

10 pages

Notes

Notes

12 pages

lecture

lecture

42 pages

lecture

lecture

29 pages

lecture

lecture

15 pages

Lecture

Lecture

12 pages

Lecture

Lecture

24 pages

Lecture

Lecture

22 pages

Midterm

Midterm

5 pages

mdps-rl

mdps-rl

26 pages

Load more
Download Lecture
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?