DOC PREVIEW
CMU CS 10701 - NNets-9-28-06

This preview shows page 1-2-24-25 out of 25 pages.

Save
View full document
Premium Document
Do you want full access? Go Premium and unlock all 25 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Neural Networks Required reading Bishop Chapter 5 especially 5 1 5 2 5 3 and 5 5 through 5 5 2 Optional reading Neural nets Mitchell chapter 4 Machine Learning 10 701 Tom M Mitchell Center for Automated Learning and Discovery Carnegie Mellon University September 28 2006 Artificial Neural Networks to learn f X Y f might be non linear function X vector of continuous and or discrete vars Y vector of continuous and or discrete vars Represent f by network of threshold units Each unit is a logistic function MLE train weights of all units to minimize sum of squared errors of network function ALVINN Pomerleau 1993 M C LE Training for Neural Networks Consider regression problem f X Y for scalar Y y f x noise N 0 iid deterministic Let s maximize the conditional data likelihood Learned neural network MAP Training for Neural Networks Consider regression problem f X Y for scalar Y y f x noise N 0 deterministic Gaussian P W N 0 ln P W c i wi2 xd input td target output od observed unit output wi weight i xd input td target output od observed unit output wij wt from i to j Original MLE error fn 2 Artificial neural networks what you should know Highly expressive non linear functions Highly parallel network of logistic function units Minimizing sum of squared training errors Gives MLE estimates of network weights if we assume zero mean Gaussian noise on output values Minimizing sum of sq errors plus weight squared regularization MAP estimates assuming weight priors are zero mean Gaussian Gradient descent as training procedure How to derive your own gradient descent procedure Discover useful representations at hidden units Local minima is greatest problem Overfitting regularization early stopping


View Full Document

CMU CS 10701 - NNets-9-28-06

Documents in this Course
lecture

lecture

12 pages

lecture

lecture

17 pages

HMMs

HMMs

40 pages

lecture

lecture

15 pages

lecture

lecture

20 pages

Notes

Notes

10 pages

Notes

Notes

15 pages

Lecture

Lecture

22 pages

Lecture

Lecture

13 pages

Lecture

Lecture

24 pages

Lecture9

Lecture9

38 pages

lecture

lecture

26 pages

lecture

lecture

13 pages

Lecture

Lecture

5 pages

lecture

lecture

18 pages

lecture

lecture

22 pages

Boosting

Boosting

11 pages

lecture

lecture

16 pages

lecture

lecture

20 pages

Lecture

Lecture

20 pages

Lecture

Lecture

39 pages

Lecture

Lecture

14 pages

Lecture

Lecture

18 pages

Lecture

Lecture

13 pages

Exam

Exam

10 pages

Lecture

Lecture

27 pages

Lecture

Lecture

15 pages

Lecture

Lecture

24 pages

Lecture

Lecture

16 pages

Lecture

Lecture

23 pages

Lecture6

Lecture6

28 pages

Notes

Notes

34 pages

lecture

lecture

15 pages

Midterm

Midterm

11 pages

lecture

lecture

11 pages

lecture

lecture

23 pages

Boosting

Boosting

35 pages

Lecture

Lecture

49 pages

Lecture

Lecture

22 pages

Lecture

Lecture

16 pages

Lecture

Lecture

18 pages

Lecture

Lecture

35 pages

lecture

lecture

22 pages

lecture

lecture

24 pages

Midterm

Midterm

17 pages

exam

exam

15 pages

Lecture12

Lecture12

32 pages

lecture

lecture

19 pages

Lecture

Lecture

32 pages

boosting

boosting

11 pages

pca-mdps

pca-mdps

56 pages

bns

bns

45 pages

mdps

mdps

42 pages

svms

svms

10 pages

Notes

Notes

12 pages

lecture

lecture

42 pages

lecture

lecture

29 pages

lecture

lecture

15 pages

Lecture

Lecture

12 pages

Lecture

Lecture

24 pages

Lecture

Lecture

22 pages

Midterm

Midterm

5 pages

mdps-rl

mdps-rl

26 pages

Load more
Download NNets-9-28-06
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view NNets-9-28-06 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view NNets-9-28-06 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?