DOC PREVIEW
CMU CS 10701 - What’s learning? Point Estimation

This preview shows page 1-2-3-4-5-6 out of 18 pages.

Save
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

http www cs cmu edu guestrin Class 10701 What s learning Point Estimation Machine Learning 10701 15781 Carlos Guestrin Carnegie Mellon University January 17th 2007 What is Machine Learning 1 Machine Learning Study of algorithms that improve their performance at some task with experience Object detection Prof H Schneiderman Example training images for each orientation 2 Text classification Company home page vs Personal home page vs Univeristy home page vs Reading a noun vs verb Rustandi et al 2005 3 Modeling sensor data Measure temperatures at some locations Predict temperatures throughout the environment Guestrin et al 04 Learning to act QuickTime and a decompressor are needed to see this picture Reinforcement learning An agent Makes sensor observations Must select action Receives rewards Ng et al 05 positive for good states negative for bad states 4 Growth of Machine Learning Machine learning is preferred approach to Speech recognition Natural language processing Computer vision Medical outcomes analysis Robot control This trend is accelerating Improved machine learning algorithms Improved data capture networking faster computers Software too complex to write by hand New sensors IO devices Demand for self customization to user environment Syllabus Covers a wide range of Machine Learning techniques from basic to state of the art You will learn about the methods you heard about Na ve Bayes logistic regression nearest neighbor decision trees boosting neural nets overfitting regularization dimensionality reduction PCA error bounds VC dimension SVMs kernels margin bounds K means EM mixture models semisupervised learning HMMs graphical models active learning reinforcement learning Covers algorithms theory and applications It s going to be fun and hard work 5 Prerequisites Probabilities Basic statistics Distributions densities marginalization Moments typical distributions regression Algorithms Programming We provide some background but the class will be fast paced Ability to deal with abstract mathematical concepts Dynamic programming basic data structures complexity Mostly your choice of language but Matlab will be very useful Review Sessions Very useful Review material Present background Answer questions Thursdays 5 30 6 50 in Wean Hall 5409 First recitation is tomorrow Review of probabilities Special recitation on Matlab Jan 24 Wed 5 30 6 50pm NSH 1305 6 Staff Four Great TAs Great resource for learning interact with them Andy Carlson acarlson cs Jonathan Huang jch1 cs Purna Sarkar psarkar cs Brian Ziebart bziebart cs Administrative Assistant Monica Hopes x8 5527 meh cs First Point of Contact for HWs To facilitate interaction a TA will be assigned to each homework question This will be your first point of contact for this question But you can always ask any of us For e mailing instructors always use 10701 instructors cs cmu edu For announcements subscribe to 10701 announce cs https mailman srv cs cmu edu mailman listinfo 10701 announce 7 Text Books Required Textbook Pattern Recognition and Machine Learning Chris Bishop Optional Books Machine Learning Tom Mitchell The Elements of Statistical Learning Data Mining Inference and Prediction Trevor Hastie Robert Tibshirani Jerome Friedman Information Theory Inference and Learning Algorithms David MacKay Grading 5 homeworks 30 First one goes out 1 24 Start early Start early Start early Start early Start early Start early Start early Start early Start early Start early Final project 20 Details Midterm 20 March out Feb 26th 7th in class Final 30 May 15th 1 4 p m 8 Homeworks Homeworks are hard start early Due in the beginning of class 3 late days for the semester After late days are used up Half credit within 48 hours Zero credit after 48 hours All homeworks must be handed in even for zero credit Late homeworks handed in to Monica Hopes WEH 4619 Collaboration You may discuss the questions Each student writes their own answers Write on your homework anyone with whom you collaborate Sitting in Auditing the Class Due to new departmental rules every student who wants to sit in the class not take it for credit must register officially for auditing To satisfy the auditing requirement you must either Do two homeworks and get at least 75 of the points in each or Take the final and get at least 50 of the points or Do a class project and do one homework and get at least 75 of the points in the homework Only need to submit project proposal and present poster and get at least 80 points in the poster Please send us an email saying that you will be auditing the class and what you plan to do If you are not a student and want to sit in the class please get authorization from the instructor 9 Enjoy ML is becoming ubiquitous in science engineering and beyond This class should give you the basic foundation for applying ML and developing new methods The fun begins Your first consulting job A billionaire from the suburbs of Seattle asks you a question He says I have thumbtack if I flip it what s the probability it will fall with the nail up You say Please flip it a few times You say The probability is He says Why You say Because 10 Thumbtack Binomial Distribution P Heads P Tails 1 Flips are i i d Independent events Identically distributed according to Binomial distribution Sequence D of H Heads and T Tails Maximum Likelihood Estimation Data Observed set D of H Heads and T Tails Hypothesis Binomial distribution Learning is an optimization problem What s the objective function MLE Choose that maximizes the probability of observed data 11 Your first learning algorithm Set derivative to zero How many flips do I need Billionaire says I flipped 3 heads and 2 tails You say 3 5 I can prove it He says What if I flipped 30 heads and 20 tails You say Same answer I can prove it He says What s better You say Humm The more the merrier He says Is this why I am paying you the big bucks 12 Simple bound based on Hoeffding s inequality For N H T and Let be the true parameter for any 0 PAC Learning PAC Probably Approximate Correct Billionaire says I want to know the thumbtack parameter within 0 1 with probability at least 1 0 95 How many flips 13 What about prior Billionaire says Wait I know that the thumbtack is close to 50 50 What can you You say I can learn it the Bayesian way Rather than estimating a single we obtain a distribution over possible values of Bayesian Learning Use Bayes rule Or equivalently 14 Bayesian Learning for Thumbtack Likelihood function is simply Binomial


View Full Document

CMU CS 10701 - What’s learning? Point Estimation

Documents in this Course
lecture

lecture

12 pages

lecture

lecture

17 pages

HMMs

HMMs

40 pages

lecture

lecture

15 pages

lecture

lecture

20 pages

Notes

Notes

10 pages

Notes

Notes

15 pages

Lecture

Lecture

22 pages

Lecture

Lecture

13 pages

Lecture

Lecture

24 pages

Lecture9

Lecture9

38 pages

lecture

lecture

26 pages

lecture

lecture

13 pages

Lecture

Lecture

5 pages

lecture

lecture

18 pages

lecture

lecture

22 pages

Boosting

Boosting

11 pages

lecture

lecture

16 pages

lecture

lecture

20 pages

Lecture

Lecture

20 pages

Lecture

Lecture

39 pages

Lecture

Lecture

14 pages

Lecture

Lecture

18 pages

Lecture

Lecture

13 pages

Exam

Exam

10 pages

Lecture

Lecture

27 pages

Lecture

Lecture

15 pages

Lecture

Lecture

24 pages

Lecture

Lecture

16 pages

Lecture

Lecture

23 pages

Lecture6

Lecture6

28 pages

Notes

Notes

34 pages

lecture

lecture

15 pages

Midterm

Midterm

11 pages

lecture

lecture

11 pages

lecture

lecture

23 pages

Boosting

Boosting

35 pages

Lecture

Lecture

49 pages

Lecture

Lecture

22 pages

Lecture

Lecture

16 pages

Lecture

Lecture

18 pages

Lecture

Lecture

35 pages

lecture

lecture

22 pages

lecture

lecture

24 pages

Midterm

Midterm

17 pages

exam

exam

15 pages

Lecture12

Lecture12

32 pages

lecture

lecture

19 pages

Lecture

Lecture

32 pages

boosting

boosting

11 pages

pca-mdps

pca-mdps

56 pages

bns

bns

45 pages

mdps

mdps

42 pages

svms

svms

10 pages

Notes

Notes

12 pages

lecture

lecture

42 pages

lecture

lecture

29 pages

lecture

lecture

15 pages

Lecture

Lecture

12 pages

Lecture

Lecture

24 pages

Lecture

Lecture

22 pages

Midterm

Midterm

5 pages

mdps-rl

mdps-rl

26 pages

Load more
Download What’s learning? Point Estimation
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view What’s learning? Point Estimation and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view What’s learning? Point Estimation and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?