DOC PREVIEW
CMU CS 15251 - Counting II: Pigeons, Pirates and Pascal

This preview shows page 1-2-3-4-5 out of 15 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

115-251Great Theoretical Ideas in Computer ScienceCounting II: Pigeons, Pirates and PascalLecture 7 (September 15, 2009)Addition Rule(2 Possibly Overlapping Sets)Let A and B be two finite sets:|A| + |B| - |A∩B||A∪B| = Difference MethodTo count the elements of a finite set S, find two sets A and B such that S = A \ BS U B = Athen |S| = |A| - |B|f is injective if and only iff is surjective if and only ifLet f : A →→→→ B Be a Function From a Set A to a Set B∀x,y∈A, x ≠ y ⇒ f(x) ≠ f(y)∀z∈B ∃x∈A f(x) = zf is bijective if f is both injective and surjectiveCorrespondence PrincipleIf two finite sets can be placed into bijection, then they have the same sizeIt’s one of the most important mathematical ideas of all time!2A B∃ injective (1-1) f : A →→→→ B ⇒ | A | ≤ | B |BA∃ surjective (onto) f : A →→→→ B ⇒ | A | ≥ | B |AB∃ bijective f : A →→→→ B ⇒⇒⇒⇒ | A | = | B |The number of subsets of an n-element set is 2nProduct RuleSuppose every object of a set S can be constructed by a sequence of choices with P1possibilities for the first choice, P2for the second, and so on. IF 1. Each sequence of choices constructs an object of type S2. No two different sequences create thesame objectThere are P1P2P3…Pnobjects of type SANDTHENThe three big mistakes people make in associating a choice tree with a set S are:1. Creating objects not in S2. Missing out some objects from the set S3. Creating the same object two different ways3DEFENSIVE THINKINGask yourself:Am I creating objects of the right type?Can I create every object of this type? Can I reverse engineer my choice sequence from any given object?Permutations vs. Combinationsn!(n-r)!n!r!(n-r)!=nrOrderedUnorderedNumber of ways of ordering, per-muting, or arranging r out of n objectsn choices for first place, n-1 choices for second place, . . .n × (n-1) × (n-2) ×…× (n-(r-1))n!(n-r)!=n “choose” rA combination or choice of r out of n objects is an (unordered) set of r of the n objectsThe number of r combinations of n objects:n!r!(n-r)!=nrThe Pigeonhole PrincipleIf there are n pigeons placed in n-1 holesthen some pigeonhole contains at least two pigeonsalso known the Dirichlet’s (box) principleExample of how to use the pigeonhole principle…At a party with n people, some handshaking took place.Each pair shook hands at most onceShow that there exist two people who shook the same number of hands.4Claim: if someone shook n-1 hands, no one can have shaken 0 hands.The number of shakes done by people lie inthe set {0, 1, 2, …, n-1}⇒ the number of shakes either all lie in{0, 1, 2, …, n-2}or {1, 2, …, n-1}⇒ there are n people and n-1 possible values. ⇒ two people with the same number of shakesThe “Letterbox” PrincipleIf there are m letterboxes and n letters,there exists a letterbox with at leastn/m lettersNow, continuing on last Now, continuing on last week’s theme…week’s theme…How many ways to How many ways to rearrange the letters in the rearrange the letters in the word word “SYSTEMS”??SYSTEMS7 places to put the Y, 6 places to put the T, 5 places to put the E, 4 places to put the M, and the S’s are forced7 X 6 X 5 X 4 = 840SYSTEMSLet’s pretend that the S’s are distinct:S1YS2TEMS3There are 7! permutations of S1YS2TEMS3But when we stop pretending we see that we have counted each arrangement of SYSTEMS 3! times, once for each of 3! rearrangements of S1S2S37!3!= 840Arrange n symbols: r1of type 1, r2of type 2, …, rkof type knr1n-r1r2…n - r1 - r2- … - rk-1rkn!(n-r1)!r1!(n-r1)!(n-r1-r2)!r2!=…=n!r1!r2! … rk!514!2!3!2!= 3,632,428,800CARNEGIEMELLONRemember:The number of ways to arrange n symbols with r1of type 1, r2of type 2, …, rkof type k is:n!r1!r2! … rk!5 distinct pirates want to divide 20 identical, indivisible bars of gold. How many different ways can they divide up the loot?Sequences with 20 G’s and 4 /’sGG/G//GGGGGGGGGGGGGGGGG/represents the following division among the pirates: 2, 1, 0, 17, 0In general, the ith pirate gets the number of G’s after the i-1st / and before the ith /This gives a correspondence between divisions of the gold and sequences with 20 G’s and 4 /’sSequences with 20 G’s and 4 /’sHow many different ways to divide up the loot?244How many different ways can n distinct pirates divide k identical, indivisible bars of gold?n + k - 1n - 1n + k - 1k=6How many integer solutions to the following equations?x1+ x2+ x3+ x4+ x5= 20x1, x2, x3, x4, x5≥ 0Think of xkare being the number of gold bars that are allotted to pirate k244How many integer solutions to the following equations?x1+ x2+ x3+ … + xn= kx1, x2, x3, …, xn≥ 0n + k - 1n - 1n + k - 1k=How many integer solutions to the following equations?x1+ x2+ x3+ … + xn= kx1, x2, x3, …, xn≥ 1How many integer solutions to the following equations?x1+ x2+ x3+ … + xn= kx1, x2, x3, …, xn≥ 1in bijection with solutions tox1+ x2+ x3+ … + xn= k-nx1, x2, x3, …, xn≥ 0MultisetsA multiset is a set of elements, each of which has a multiplicityThe size of the multiset is the sum of the multiplicities of all the elementsExample: {X, Y, Z} with m(X)=0 m(Y)=3, m(Z)=2Unary visualization: {Y, Y, Y, Z, Z}Counting Multisets=n + k - 1n - 1n + k - 1kThe number of ways to choose a multiset of size k from n types of elements is:7Identical/Distinct DiceSuppose that we roll seven diceHow many different outcomes are there, if order matters?67What if order doesn’t matter?(E.g., Yahtzee)127Remember to distinguish betweenIdentical / Distinct ObjectsIf we are putting k objects into n distinct bins.Objects are distinguishableObjects are indistinguishablek+n-1knkOn to Pascal…4+ +( )+( ) =++ + + +Polynomials ExpressChoices and OutcomesProducts of Sum = Sums of Products4b2b3b1t1t2t1t2t1t2b1t1b1t2b2t1b2t2b3t1b3t2(b1+b2+b3)(t1+t2) = b1t1b1t2b2t1b2t2b3t1b3t2+ + + + +4There is a correspondence between paths in a choice tree and the cross terms of the product of polynomials!841 X 1 X1 X 1 X1 X1 X1 X1 XXX2XX2X2X3Choice Tree for Terms of (1+X)3Combine like terms to get 1 + 3X + 3X2+ X3The Binomial Formula(1+X)0=(1+X)1=(1+X)2=(1+X)3=(1+X)4=11 + 1X1 + 2X + 1X21 + 3X + 3X2+ 1X31 + 4X + 6X2+ 4X3+ 1X4What is a Closed Form Expression For ck?(1+X)n= c0+ c1X + c2X2+ … + cnXn(1+X)(1+X)(1+X)(1+X)…(1+X)After multiplying things out, but before combining like terms, we get 2ncross terms, each corresponding to a path in the choice


View Full Document

CMU CS 15251 - Counting II: Pigeons, Pirates and Pascal

Documents in this Course
lecture

lecture

66 pages

lecture

lecture

79 pages

lecture

lecture

111 pages

lecture

lecture

85 pages

lecture17

lecture17

64 pages

Lecture

Lecture

85 pages

Lecture

Lecture

71 pages

Lecture

Lecture

70 pages

Lecture

Lecture

11 pages

Lecture

Lecture

45 pages

Lecture

Lecture

50 pages

Lecture

Lecture

93 pages

Lecture

Lecture

93 pages

Lecture

Lecture

35 pages

Lecture

Lecture

98 pages

Lecture

Lecture

74 pages

Lecture

Lecture

13 pages

Lecture

Lecture

15 pages

Lecture

Lecture

66 pages

Lecture

Lecture

82 pages

Lecture

Lecture

15 pages

Lecture

Lecture

47 pages

Lecture

Lecture

69 pages

Lecture

Lecture

13 pages

Lecture

Lecture

67 pages

Lecture

Lecture

68 pages

Lecture

Lecture

69 pages

lecture03

lecture03

44 pages

Lecture

Lecture

69 pages

Lecture

Lecture

68 pages

Lecture

Lecture

55 pages

Lecture

Lecture

79 pages

Lecture

Lecture

85 pages

Lecture

Lecture

87 pages

Lecture

Lecture

85 pages

Lecture

Lecture

103 pages

Lecture

Lecture

9 pages

Lecture

Lecture

83 pages

Lecture

Lecture

8 pages

lecture03

lecture03

68 pages

lecture24

lecture24

78 pages

lecture03

lecture03

72 pages

Thales

Thales

129 pages

lecture13

lecture13

81 pages

Lecture

Lecture

64 pages

lecture01

lecture01

59 pages

lecture11

lecture11

105 pages

Lecture

Lecture

89 pages

Lecture

Lecture

74 pages

lecture25

lecture25

57 pages

Lecture

Lecture

99 pages

lecture

lecture

50 pages

lecture

lecture

14 pages

Lecture

Lecture

78 pages

lecture

lecture

8 pages

Lecture

Lecture

98 pages

lecture

lecture

83 pages

lecture23

lecture23

88 pages

lecture

lecture

64 pages

lecture

lecture

72 pages

Lecture

Lecture

88 pages

lecture

lecture

79 pages

Lecture

Lecture

60 pages

lecture

lecture

74 pages

lecture19

lecture19

72 pages

lecture25

lecture25

86 pages

lecture

lecture

13 pages

lecture17

lecture17

79 pages

lecture

lecture

91 pages

lecture

lecture

78 pages

Lecture

Lecture

11 pages

Lecture

Lecture

54 pages

lecture

lecture

72 pages

lecture

lecture

119 pages

lecture

lecture

167 pages

lecture

lecture

73 pages

lecture

lecture

73 pages

lecture

lecture

83 pages

lecture

lecture

49 pages

lecture

lecture

16 pages

lecture

lecture

67 pages

lecture

lecture

81 pages

lecture

lecture

72 pages

lecture

lecture

57 pages

lecture16

lecture16

82 pages

lecture21

lecture21

46 pages

Lecture

Lecture

92 pages

Lecture

Lecture

14 pages

Lecture

Lecture

49 pages

Lecture

Lecture

132 pages

Lecture

Lecture

101 pages

Lecture

Lecture

98 pages

Lecture

Lecture

59 pages

Lecture

Lecture

64 pages

Lecture

Lecture

106 pages

Lecture

Lecture

70 pages

Lecture

Lecture

80 pages

Lecture

Lecture

76 pages

Lecture

Lecture

91 pages

Lecture

Lecture

112 pages

Lecture

Lecture

91 pages

Lecture

Lecture

10 pages

Lecture

Lecture

39 pages

Lecture

Lecture

79 pages

Lecture

Lecture

74 pages

Lecture

Lecture

44 pages

Lecture

Lecture

39 pages

Lecture

Lecture

99 pages

Lecture

Lecture

44 pages

Lecture

Lecture

59 pages

Lecture

Lecture

36 pages

lecture17

lecture17

36 pages

lecture

lecture

71 pages

lecture

lecture

79 pages

lecture

lecture

12 pages

lecture

lecture

43 pages

lecture

lecture

87 pages

lecture

lecture

35 pages

lecture03

lecture03

23 pages

lecture

lecture

68 pages

lecture

lecture

74 pages

lecture

lecture

21 pages

lecture

lecture

79 pages

lecture

lecture

15 pages

lecture

lecture

83 pages

lecture

lecture

13 pages

Lecture

Lecture

53 pages

lecture

lecture

55 pages

lecture

lecture

49 pages

lecture

lecture

10 pages

lecture

lecture

70 pages

lecture

lecture

12 pages

Lecture

Lecture

105 pages

Lecture

Lecture

9 pages

Lecture

Lecture

72 pages

Lecture

Lecture

66 pages

Lecture

Lecture

54 pages

Lecture

Lecture

98 pages

Lecture

Lecture

57 pages

Lecture

Lecture

75 pages

Lecture

Lecture

48 pages

lecture

lecture

53 pages

Lecture

Lecture

72 pages

Lecture

Lecture

53 pages

Lecture

Lecture

84 pages

Lecture

Lecture

55 pages

Lecture

Lecture

15 pages

Lecture

Lecture

6 pages

Lecture

Lecture

38 pages

Lecture

Lecture

71 pages

Lecture

Lecture

110 pages

Lecture

Lecture

70 pages

lecture

lecture

48 pages

lecture

lecture

76 pages

lecture

lecture

48 pages

lecture

lecture

52 pages

lecture

lecture

43 pages

lecture

lecture

81 pages

lecture

lecture

82 pages

lecture

lecture

83 pages

lecture

lecture

64 pages

lecture

lecture

71 pages

lecture

lecture

65 pages

lecture

lecture

56 pages

lecture

lecture

12 pages

lecture

lecture

66 pages

lecture

lecture

50 pages

lecture

lecture

86 pages

lecture

lecture

70 pages

Lecture

Lecture

74 pages

Lecture

Lecture

54 pages

Lecture

Lecture

90 pages

lecture

lecture

78 pages

lecture

lecture

87 pages

Lecture

Lecture

55 pages

Lecture

Lecture

12 pages

lecture21

lecture21

66 pages

Lecture

Lecture

11 pages

lecture

lecture

83 pages

Lecture

Lecture

53 pages

Lecture

Lecture

69 pages

Lecture

Lecture

12 pages

lecture04

lecture04

97 pages

Lecture

Lecture

14 pages

lecture

lecture

75 pages

Lecture

Lecture

74 pages

graphs2

graphs2

8 pages

lecture

lecture

82 pages

Lecture

Lecture

8 pages

lecture

lecture

47 pages

lecture

lecture

91 pages

lecture

lecture

76 pages

lecture

lecture

73 pages

lecture

lecture

10 pages

lecture

lecture

63 pages

lecture

lecture

91 pages

lecture

lecture

79 pages

lecture

lecture

9 pages

lecture

lecture

70 pages

lecture

lecture

86 pages

lecture

lecture

102 pages

lecture

lecture

145 pages

lecture

lecture

91 pages

Lecture

Lecture

87 pages

lecture

lecture

87 pages

Notes

Notes

19 pages

Lecture

Lecture

50 pages

Lecture

Lecture

13 pages

Lecture

Lecture

97 pages

Lecture

Lecture

98 pages

Lecture

Lecture

83 pages

Lecture

Lecture

77 pages

Lecture

Lecture

102 pages

Lecture

Lecture

63 pages

Lecture

Lecture

104 pages

lecture

lecture

41 pages

lecture

lecture

14 pages

Lecture

Lecture

87 pages

Lecture

Lecture

94 pages

lecture

lecture

9 pages

Lecture

Lecture

96 pages

Lecture

Lecture

72 pages

Lecture

Lecture

35 pages

Lecture

Lecture

77 pages

Lecture

Lecture

98 pages

Lecture

Lecture

48 pages

Lecture

Lecture

66 pages

Lecture

Lecture

53 pages

lecture18

lecture18

101 pages

Lecture

Lecture

10 pages

Lecture

Lecture

70 pages

Lecture

Lecture

12 pages

Lecture

Lecture

74 pages

graphs

graphs

10 pages

Lecture

Lecture

62 pages

Lecture

Lecture

11 pages

Lecture

Lecture

71 pages

Lecture

Lecture

42 pages

lecture15

lecture15

72 pages

Lecture

Lecture

82 pages

Load more
Download Counting II: Pigeons, Pirates and Pascal
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Counting II: Pigeons, Pirates and Pascal and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Counting II: Pigeons, Pirates and Pascal 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?