DOC PREVIEW
CMU CS 15251 - Lecture

This preview shows page 1-2 out of 6 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1Algebraic Structures: Group Theory IIGreat Theoretical Ideas In Computer ScienceVictor AdamchikDanny SleatorCS 15-251 Spring 2010Lecture 17 Mar. 17, 2010 Carnegie Mellon University3. (Inverses) For every a  S there is b  S such that:GroupA group G is a pair (S,), where S is a set and  is a binary operation on S such that:1.  is associative2. (Identity) There exists an element e  S such that:e  a = a  e = a, for all a  Sa  b = b  a = eRevieworder of a group G = size of the group Gorder of an element g = (smallest n>0 s.t. gn= e)g is a generator if order(g) = order(G)Theorem:Let x be an element of G. The order of x divides the order of GOrders(Z10: +)Orders: example{0,1,2,3,4,5,6,7,8,9}smallest n>0 such that gn= e1 10 5 10 5 2Let G be a group. A non-empty set H G is a subgroup if it forms a group under the same operation.SubgroupsExercise. Does {0,2,4} form a subgroup of Z6under +?Exercise. Does {2n, nZ} form a subgroup of Q\{0} under *?2Let G be a group. A non-empty set H G is a subgroup if it forms a group under the same operation.SubgroupsExercise. List all subgroups of Z12under +.Z12{0} {0,6} {0,4,8} {0,3,6,9}{0,2,4,6,8,10}We are going to generalize the idea of congruent classes mod n in (Z,+).Theorem. Let H is a subgroup of G. Define a relation: ab iff a  b-1 H.Then  is an equivalence relation.Cosetsa = b (mod n) iff a - b  <n>Theorem. Let H is a subgroup of G. Define a relation: ab iff a  b-1 H.Then  is an equivalence relation.Proof. Reflexive: aa iff a  a-1=e  HCosetsTransitive: a  c-1=(a  b-1)(b  c-1)  H Symmetric: b  a-1=(a  b-1)-1 HThe equivalent classes for this relation is called the right cosets of H in G.CosetsIf His a subgroup of a group Gthen for any element g of the group the set of products of the form h  g where hHis a right coset of Hdenoted by the symbol Hg.Exercise.Write down the right coset of the subgroup {0,3,6,9} of Z12under +.CosetsRight coset= {h g | h  H, g  G}{0,3,6,9} + {0,1,2,3,4,5,6,7,8,9,10,11} =[3]+0 = {0,3,6,9}[3]+1 = {1,4,7,10}[3]+2 = {2,5,8,11}Theorem.If H is a finite subgroup of G and xG, then |H|=|Hx|CosetsProof. We prove this by finding a bijection between H and Hx.It is onto, because Hx consists of the elements of the form hx, where hH.Assume that there are h1, h2H. .Then h1x= h2x. It follows, h1=h2.3Theorem.If H is a finite subgroup of G, then G = xGHx.Cosets: partitioningProof. Cosets are equivalent classes.The two cosets are either equal or disjoint.Since G is finite, there are finitely many such cosets.Every element x of G belongs to the cosetdetermined by it.x = x e  Hx, since eH.Lagrange’s Theorem Theorem: If G is a finite group, and H is a subgroup then the order of H divides the order of G. In symbols, |H| divides |G|.Lagrange’s Theorem Theorem: |H| divides |G|.Proof: G is partitioning into cosets.Pick a representative from each cosetG = j=1…kHxjEach coset contains |H| elements.It follows |G| = k |H|. Thus |H| is a divisor of |G|.Lagrange’s Theorem: what is for? The theorem simplifies the problem offinding all subgroups of a finite group.Consider group of symmetry of square YSQ= { R0, R90, R180, R270, F|, F—, F , F }Except {R0} and Ysq, all other subgroups must have order 2 or 4. R90R180R270R0F|F—F FR0R90R180R270F|F—FFR0R90R180R270F|F—F FR90R180R270F|F—FFR180R270R0R270R0R90R0R90R180F F F|F—F—F|F FF F F—F|F F—FF F|FF—F F|F|F F—R0R0R0R0R180R90R270R180R270R90R270R90R180R90R270R180Order 2R90R180R270R0F|F—F FR0R90R180R270F|F—FFR0R90R180R270F|F—F FR90R180R270F|F—FFR180R270R0R270R0R90R0R90R180F F F|F—F—F|F FF F F—F|F F—FF F|FF—F F|F|F F—R0R0R0R0R180R90R270R180R270R90R270R90R180R90R270R180Order 44Lagrange’s TheoremExercise.Suppose that H and K are subgroups of G and assume that |H| = 9, |K| = 6, |G| < 50. What are the possible values of |G|?LCM(9,6) = 18, so |G|=18 or 36IsomorphismMapping between objects, which shows that they are structurally identical.Any property which is preserved by an isomorphism and which is true for one of the objects, is also true of the other.IsomorphismExample.{1,2,3,…}, or {I, II, III,…}, or {один, два, три,…}Mathematically we want to think aboutthese sets as being the same.Group IsomorphismDefinition. Let G be a group with operation  and H with . An isomorphism of G to H is a bijectionf: GH that satisfiesf(x  y) = f(x)  f(y)If we replace bijection by injection, such mapping is called a homomorphism. Group IsomorphismExample. G = (Z, +), H = (even, +)Isomorphism is provided by f(n) = 2 nf(n + m) = 2 (n+m) = (2n)+(2m)=f(n)+f(m)Group IsomorphismExample. G = (R+, ), H = (R, +)Isomorphism is provided by f(x) = log(x)f(x  y) = log(x  y) = log(x) + log(y) = f(x) + f(y)5Group IsomorphismTheorem. Let G be a group with operation , H with  and they are isomorphic f(x  y) = f(x)  f(y). Then f(eG) = eHProof. f(eG)= f(eG eG) = f(eG)  f(eG). On the other hand, f(eG)=f(eG)  eHf(eG)  eH= f(eG)  f(eG)  f(eG) = eHGroup IsomorphismTheorem. Let G be a group with operation , H with  and they are isomorphic f(x  y) = f(x)  f(y). Then f(x-1) = f(x)-1, xGProof. f(x)  f(x-1) = f(x  x-1) =f(eG) = eH. Group IsomorphismIn order to prove that two groups and are not isomorphic, one needs to demonstrate that there is no isomorphism from onto . Usually, in practice, this is accomplished by finding some property that holds in one group, but not in the other. Examples. (Z4, +) and (Z6, +)They have different orders.+ 0 1 2 30 0 1 2 31 1 2 3 02 2 3 0 13 3 0 1 2* 1 2 3 41 1 2 3 42 2 4 1 33 3 1 4 24 4 3 2 1Exercise. Verify that (Z4, +) is isomorphic to (Z*5, *)Group IsomorphismExercise. Verify that (Z4, +) is isomorphic to (Z*5, *)Z4is generated by 1 as in 0, 1, 2, 3, (then back to 0)Z*5 is generate by 2 as in 1, 2, 4, 3, (then back to 1)0  1 1  2 2  4 3  3f(x)= 2xmod 5Cyclic GroupsDefinition. Let G be a group and xG. Then <x>={xk| k Z} is a cyclic subgroup generated by x.Examples. (Zn,+) = <1>(Z*5,*) = <2> or <3>6Cyclic GroupsTheorem. A group of prime order is cyclic, and furthermore any non-identity element is a generator.Proof. Let |G|=p (prime) and xG.By Lagrange’s theorem, order(x) divides |G|.Since p is prime, there are two divisors 1 and p. Clearly it is not 1, because otherwise x=e.Cyclic GroupsTheorem. Any finite cyclic group of


View Full Document

CMU CS 15251 - Lecture

Documents in this Course
lecture

lecture

66 pages

lecture

lecture

79 pages

lecture

lecture

111 pages

lecture

lecture

85 pages

lecture17

lecture17

64 pages

Lecture

Lecture

85 pages

Lecture

Lecture

71 pages

Lecture

Lecture

70 pages

Lecture

Lecture

11 pages

Lecture

Lecture

45 pages

Lecture

Lecture

50 pages

Lecture

Lecture

93 pages

Lecture

Lecture

93 pages

Lecture

Lecture

35 pages

Lecture

Lecture

98 pages

Lecture

Lecture

74 pages

Lecture

Lecture

13 pages

Lecture

Lecture

15 pages

Lecture

Lecture

66 pages

Lecture

Lecture

82 pages

Lecture

Lecture

15 pages

Lecture

Lecture

47 pages

Lecture

Lecture

69 pages

Lecture

Lecture

13 pages

Lecture

Lecture

67 pages

Lecture

Lecture

68 pages

Lecture

Lecture

69 pages

lecture03

lecture03

44 pages

Lecture

Lecture

69 pages

Lecture

Lecture

68 pages

Lecture

Lecture

55 pages

Lecture

Lecture

79 pages

Lecture

Lecture

85 pages

Lecture

Lecture

87 pages

Lecture

Lecture

85 pages

Lecture

Lecture

103 pages

Lecture

Lecture

9 pages

Lecture

Lecture

83 pages

Lecture

Lecture

8 pages

lecture03

lecture03

68 pages

lecture24

lecture24

78 pages

lecture03

lecture03

72 pages

Thales

Thales

129 pages

lecture13

lecture13

81 pages

Lecture

Lecture

64 pages

lecture01

lecture01

59 pages

lecture11

lecture11

105 pages

Lecture

Lecture

89 pages

Lecture

Lecture

74 pages

lecture25

lecture25

57 pages

Lecture

Lecture

99 pages

lecture

lecture

50 pages

lecture

lecture

14 pages

Lecture

Lecture

78 pages

lecture

lecture

8 pages

Lecture

Lecture

98 pages

lecture

lecture

83 pages

lecture23

lecture23

88 pages

lecture

lecture

64 pages

lecture

lecture

72 pages

Lecture

Lecture

88 pages

lecture

lecture

79 pages

Lecture

Lecture

60 pages

lecture

lecture

74 pages

lecture19

lecture19

72 pages

lecture25

lecture25

86 pages

lecture

lecture

13 pages

lecture17

lecture17

79 pages

lecture

lecture

91 pages

lecture

lecture

78 pages

Lecture

Lecture

11 pages

Lecture

Lecture

54 pages

lecture

lecture

72 pages

lecture

lecture

119 pages

lecture

lecture

167 pages

lecture

lecture

73 pages

lecture

lecture

73 pages

lecture

lecture

83 pages

lecture

lecture

49 pages

lecture

lecture

16 pages

lecture

lecture

67 pages

lecture

lecture

81 pages

lecture

lecture

72 pages

lecture

lecture

57 pages

lecture16

lecture16

82 pages

lecture21

lecture21

46 pages

Lecture

Lecture

92 pages

Lecture

Lecture

14 pages

Lecture

Lecture

49 pages

Lecture

Lecture

132 pages

Lecture

Lecture

101 pages

Lecture

Lecture

98 pages

Lecture

Lecture

59 pages

Lecture

Lecture

64 pages

Lecture

Lecture

106 pages

Lecture

Lecture

70 pages

Lecture

Lecture

80 pages

Lecture

Lecture

76 pages

Lecture

Lecture

91 pages

Lecture

Lecture

112 pages

Lecture

Lecture

91 pages

Lecture

Lecture

10 pages

Lecture

Lecture

39 pages

Lecture

Lecture

79 pages

Lecture

Lecture

74 pages

Lecture

Lecture

44 pages

Lecture

Lecture

39 pages

Lecture

Lecture

99 pages

Lecture

Lecture

44 pages

Lecture

Lecture

59 pages

Lecture

Lecture

36 pages

lecture17

lecture17

36 pages

lecture

lecture

71 pages

lecture

lecture

79 pages

lecture

lecture

12 pages

lecture

lecture

43 pages

lecture

lecture

87 pages

lecture

lecture

35 pages

lecture03

lecture03

23 pages

lecture

lecture

68 pages

lecture

lecture

74 pages

lecture

lecture

21 pages

lecture

lecture

79 pages

lecture

lecture

15 pages

lecture

lecture

83 pages

lecture

lecture

13 pages

Lecture

Lecture

53 pages

lecture

lecture

55 pages

lecture

lecture

49 pages

lecture

lecture

10 pages

lecture

lecture

70 pages

lecture

lecture

12 pages

Lecture

Lecture

105 pages

Lecture

Lecture

9 pages

Lecture

Lecture

72 pages

Lecture

Lecture

66 pages

Lecture

Lecture

54 pages

Lecture

Lecture

98 pages

Lecture

Lecture

57 pages

Lecture

Lecture

75 pages

Lecture

Lecture

48 pages

lecture

lecture

53 pages

Lecture

Lecture

72 pages

Lecture

Lecture

53 pages

Lecture

Lecture

84 pages

Lecture

Lecture

55 pages

Lecture

Lecture

15 pages

Lecture

Lecture

38 pages

Lecture

Lecture

71 pages

Lecture

Lecture

110 pages

Lecture

Lecture

70 pages

lecture

lecture

48 pages

lecture

lecture

76 pages

lecture

lecture

48 pages

lecture

lecture

52 pages

lecture

lecture

43 pages

lecture

lecture

81 pages

lecture

lecture

82 pages

lecture

lecture

83 pages

lecture

lecture

64 pages

lecture

lecture

71 pages

lecture

lecture

65 pages

lecture

lecture

56 pages

lecture

lecture

12 pages

lecture

lecture

66 pages

lecture

lecture

50 pages

lecture

lecture

86 pages

lecture

lecture

70 pages

Lecture

Lecture

74 pages

Lecture

Lecture

54 pages

Lecture

Lecture

90 pages

lecture

lecture

78 pages

lecture

lecture

87 pages

Lecture

Lecture

55 pages

Lecture

Lecture

12 pages

lecture21

lecture21

66 pages

Lecture

Lecture

11 pages

lecture

lecture

83 pages

Lecture

Lecture

53 pages

Lecture

Lecture

69 pages

Lecture

Lecture

12 pages

lecture04

lecture04

97 pages

Lecture

Lecture

14 pages

lecture

lecture

75 pages

Lecture

Lecture

74 pages

graphs2

graphs2

8 pages

lecture

lecture

82 pages

Lecture

Lecture

8 pages

lecture

lecture

47 pages

lecture

lecture

91 pages

lecture

lecture

76 pages

lecture

lecture

73 pages

lecture

lecture

10 pages

lecture

lecture

63 pages

lecture

lecture

91 pages

lecture

lecture

79 pages

lecture

lecture

9 pages

lecture

lecture

70 pages

lecture

lecture

86 pages

lecture

lecture

102 pages

lecture

lecture

145 pages

lecture

lecture

91 pages

Lecture

Lecture

87 pages

lecture

lecture

87 pages

Notes

Notes

19 pages

Lecture

Lecture

50 pages

Lecture

Lecture

13 pages

Lecture

Lecture

97 pages

Lecture

Lecture

98 pages

Lecture

Lecture

83 pages

Lecture

Lecture

77 pages

Lecture

Lecture

102 pages

Lecture

Lecture

63 pages

Lecture

Lecture

104 pages

lecture

lecture

41 pages

lecture

lecture

14 pages

Lecture

Lecture

87 pages

Lecture

Lecture

94 pages

lecture

lecture

9 pages

Lecture

Lecture

96 pages

Lecture

Lecture

72 pages

Lecture

Lecture

35 pages

Lecture

Lecture

77 pages

Lecture

Lecture

98 pages

Lecture

Lecture

48 pages

Lecture

Lecture

66 pages

Lecture

Lecture

53 pages

lecture18

lecture18

101 pages

Lecture

Lecture

10 pages

Lecture

Lecture

70 pages

Lecture

Lecture

12 pages

Lecture

Lecture

74 pages

graphs

graphs

10 pages

Lecture

Lecture

62 pages

Lecture

Lecture

11 pages

Lecture

Lecture

71 pages

Lecture

Lecture

42 pages

lecture15

lecture15

72 pages

Lecture

Lecture

82 pages

Load more
Download Lecture
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?