DOC PREVIEW
CMU CS 15251 - Generating Functions

This preview shows page 1-2-3 out of 10 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

15-251: Great Theoretical Ideas in Computer Science Anupam GuptaGenerating Functions (draft!!) January 29, 2012A generating function represents an entire, infinite sequence as a single mathematical objectthat can be manipulated algebraically. The strength of the representation lies in the factthat many operations can be carried out a generating function, including differentiation,integration, multiplication, and others, even though the underlying sequence may be definedin purely symbolic or combinatorial terms. This makes generating functions an elegantand powerful counting technique. In fact, in the text Concrete Mathematics [?], generatingfunctions are described as “the most important idea in this whole book.”If a0, a1, a2, . . . is a sequence, then we define the formal power series A(z) asA(z) = a0+ a1z + a2z2+ · · · =∞Xk=0akzk. (1)The adjective formal means that z is an abstract indeterminate, and we are not concernedabout numerical convergence of the series for any particular value of z.The product of generating functions is defined asA(z)B(z) =a0+ a1z + a2z2+ · · ·b0+ b1z + b2z2+ · · ·(2)= a0b0+ (a0b1+ a1b0) z + (a0b2+ a1b1+ a2b0) z2+ · · · (3)= c0+ c1z + c2z2+ · · · (4)= C(z) (5)whereck=kXi=0aibk−i. (6)Such a sum is sometimes called a discrete convolution.Here’s an application of this identity. From the binomial theorem we have(1 + z)r=Xk≥0rkzk(7)(1 + z)s=Xk≥0skzk(8)and therefore(1 + z)r(1 + z)s= (1 + z)r+s(9)=Xk≥0r + skzk. (10)1Therefore we have, by the convolution identity,r + sk=kXi=0risk − i. (11)We’ve seen this before—it’s the number of ways of choosing k turns from a total of r avenuesand s streets.As another example, using the binomial theorem we have(1 − z)r(1 + z)r= (1 − z2)r(12)=Xk≥0(−1)krkz2k. (13)But now applying the convolution identity (6) on the left, we obtainkXi=0(−1)irirk − i=(0 if k is odd;(−1)k/2rk/2if k is even.(14)This might look a bit strange; let’s check some small examples. Taking k = 2,r0r2−r1r1+r2r0= 2r2− r2(15)= −r (16)= −r1(17)which checks out. Taking k = 3, we getr0r3−r1r2+r2r1−r3r0= 0 (18)which also checks.1 Math CountsTo see the usefulness of generating functions for counting, suppose that we have two disjointsets A and B. Also, suppose that there are anways of selecting n elements from A and bnways of selecting n elements from B. Then the number ways cnof selecting a total of n itemsfrom either A or B iscn=nXk=0akbn−k(19)To express this in terms of generating functions, we have that the generating function forselecting items from either A or B isC(z) = A(z)B(z). (20)We saw this earlier with choice trees and polynomials; the generating function idea extendsit to choice trees of “infinite depth.”22 A Fruity ExampleHere’s a fun example (from notes by Albert R. Meyer and Clifford Smyth) that illustrateshow generating functions can solve some seemingly very messy counting problems.Suppose that we want to fill a basket with fruit, but we impose on ourselves some very quirkyconstraints:1. The number of apples must be a multiple of five (an apple a [week]day...)2. The number of bananas must be even (eaten before 15-251 on Tues/Thurs...)3. We can take at most four oranges (too acidic...).4. There can be at most one pear (get mushy too fast...)If we try to count the number of ways directly, it looks complicated. For example, with abasket of five fruits, there are six possibilities:apples 0 0 0 0 0 5bananas 4 4 2 2 0 0oranges 1 0 2 3 4 0pears 0 1 1 0 1 0It’s hard to see any clear pattern here that would extend to bigger baskets.Let’s give generating functions a shot. Since the number of bananas must be even, thesequence hbni is h1, 0, 1, 0, 1, 0, . . .i, and so the generating functions for bananas isB(z) =Xn≥0bnzn= 1 + z2+ z4+ · · · =11 − z2. (21)Similarly, the generating function for apples isA(z) =Xn≥0anzn= 1 + z5+ z10+ · · · =11 − z5. (22)The generating functions O(z) and P (z) for oranges and pears are even easier:O(z) = 1 + z + z2+ z3+ z4(23)P (z) = 1 + z. (24)Now, recall from our manipulations with geometric series that O(z) = (1 − z5)/(1 − z). So,when we multiply all of these functions together, we getA(z)B(z)O(z)P(z) =11 − z511 − z21 − z51 − z(1 + z) (25)=1(1 − z)2. (26)3Now, we need to re-expand this as a series. To do this, we use a little differentiation:1(1 − z)2=ddz1(1 − z)(27)=ddz∞Xn=0zn(28)=∞Xn=0ddzzn(29)=∞Xn=1nzn−1(30)=∞Xn=0(n + 1)zn. (31)We’ve determined that the number of ways of filling a basket with n fruits that satisfies ourfruity constraints is n + 1. That wasn’t so bad after all! Note that our special case abovechecks out: there are six ways to take five fruits.3 Basic Properties of Generating FunctionsLet’s now look at some of the basic ways we can manipulate generating functions, whichgive us a bag of tricks to be used for counting problems. Let A(z) and B(z) denote twogenerating functions for the sequences hani and hbni respectively, so thatA(z) = a0+ a1z + a2z2+ · · · =∞Xk=0akzk(32)B(z) = b0+ b1z + b2z2+ · · · =∞Xk=0bkzk. (33)We can add the two functions, and multiply by a scalar; thus αA(z) + βB(z) = C(z) is thegenerating function for the sequence hcni = hαan+ βbni. We can also easily get the functionfor a sequence shifted m places to the right by multiplying by zm:zmA(z) =Xnanzn+m=Xnan−mzn(34)which corresponds to the sequence shifted to the right:0, 0, . . . , 0| {z }m, a0, a1, a2. . . (35)Shifting to the left is simple as well:A(z) − a0− a1z − . . . am−1zm−1zm=Xn≥manzn−m=Xn≥0an+mzn(36)4which corresponds to the sequenceam, am+1, am+2. . . (37)where the first m coefficients are dropped. Another useful technique is to replace the variablez by cz, where c is a constant, yieldingA(cz) =Xnancnzn(38)which is the generating function for the sequence hancni. If we want to replace hani by hnanithen the thing to do is differentiate and multiply by z:zA0(z) = zXnnanzn−1=Xnnanzn(39)This highlights our perspective that generating functions are formal power series; we arenot concerned with the numerical convergence of the series, and whether the derivative isdefined, etc. In a similar fashion, we can take the integral and useZx0zndt =1n + 1zn+1(40)to obtainZx0A(t) dt =Xn≥11nan−1zn(41)We’ve seen above that


View Full Document

CMU CS 15251 - Generating Functions

Documents in this Course
lecture

lecture

66 pages

lecture

lecture

79 pages

lecture

lecture

111 pages

lecture

lecture

85 pages

lecture17

lecture17

64 pages

Lecture

Lecture

85 pages

Lecture

Lecture

71 pages

Lecture

Lecture

70 pages

Lecture

Lecture

11 pages

Lecture

Lecture

45 pages

Lecture

Lecture

50 pages

Lecture

Lecture

93 pages

Lecture

Lecture

93 pages

Lecture

Lecture

35 pages

Lecture

Lecture

98 pages

Lecture

Lecture

74 pages

Lecture

Lecture

13 pages

Lecture

Lecture

15 pages

Lecture

Lecture

66 pages

Lecture

Lecture

82 pages

Lecture

Lecture

15 pages

Lecture

Lecture

47 pages

Lecture

Lecture

69 pages

Lecture

Lecture

13 pages

Lecture

Lecture

67 pages

Lecture

Lecture

68 pages

Lecture

Lecture

69 pages

lecture03

lecture03

44 pages

Lecture

Lecture

69 pages

Lecture

Lecture

68 pages

Lecture

Lecture

55 pages

Lecture

Lecture

79 pages

Lecture

Lecture

85 pages

Lecture

Lecture

87 pages

Lecture

Lecture

85 pages

Lecture

Lecture

103 pages

Lecture

Lecture

9 pages

Lecture

Lecture

83 pages

Lecture

Lecture

8 pages

lecture03

lecture03

68 pages

lecture24

lecture24

78 pages

lecture03

lecture03

72 pages

Thales

Thales

129 pages

lecture13

lecture13

81 pages

Lecture

Lecture

64 pages

lecture01

lecture01

59 pages

lecture11

lecture11

105 pages

Lecture

Lecture

89 pages

Lecture

Lecture

74 pages

lecture25

lecture25

57 pages

Lecture

Lecture

99 pages

lecture

lecture

50 pages

lecture

lecture

14 pages

Lecture

Lecture

78 pages

lecture

lecture

8 pages

Lecture

Lecture

98 pages

lecture

lecture

83 pages

lecture23

lecture23

88 pages

lecture

lecture

64 pages

lecture

lecture

72 pages

Lecture

Lecture

88 pages

lecture

lecture

79 pages

Lecture

Lecture

60 pages

lecture

lecture

74 pages

lecture19

lecture19

72 pages

lecture25

lecture25

86 pages

lecture

lecture

13 pages

lecture17

lecture17

79 pages

lecture

lecture

91 pages

lecture

lecture

78 pages

Lecture

Lecture

11 pages

Lecture

Lecture

54 pages

lecture

lecture

72 pages

lecture

lecture

119 pages

lecture

lecture

167 pages

lecture

lecture

73 pages

lecture

lecture

73 pages

lecture

lecture

83 pages

lecture

lecture

49 pages

lecture

lecture

16 pages

lecture

lecture

67 pages

lecture

lecture

81 pages

lecture

lecture

72 pages

lecture

lecture

57 pages

lecture16

lecture16

82 pages

lecture21

lecture21

46 pages

Lecture

Lecture

92 pages

Lecture

Lecture

14 pages

Lecture

Lecture

49 pages

Lecture

Lecture

132 pages

Lecture

Lecture

101 pages

Lecture

Lecture

98 pages

Lecture

Lecture

59 pages

Lecture

Lecture

64 pages

Lecture

Lecture

106 pages

Lecture

Lecture

70 pages

Lecture

Lecture

80 pages

Lecture

Lecture

76 pages

Lecture

Lecture

91 pages

Lecture

Lecture

112 pages

Lecture

Lecture

91 pages

Lecture

Lecture

10 pages

Lecture

Lecture

39 pages

Lecture

Lecture

79 pages

Lecture

Lecture

74 pages

Lecture

Lecture

44 pages

Lecture

Lecture

39 pages

Lecture

Lecture

99 pages

Lecture

Lecture

44 pages

Lecture

Lecture

59 pages

Lecture

Lecture

36 pages

lecture17

lecture17

36 pages

lecture

lecture

71 pages

lecture

lecture

79 pages

lecture

lecture

12 pages

lecture

lecture

43 pages

lecture

lecture

87 pages

lecture

lecture

35 pages

lecture03

lecture03

23 pages

lecture

lecture

68 pages

lecture

lecture

74 pages

lecture

lecture

21 pages

lecture

lecture

79 pages

lecture

lecture

15 pages

lecture

lecture

83 pages

lecture

lecture

13 pages

Lecture

Lecture

53 pages

lecture

lecture

55 pages

lecture

lecture

49 pages

lecture

lecture

10 pages

lecture

lecture

70 pages

lecture

lecture

12 pages

Lecture

Lecture

105 pages

Lecture

Lecture

9 pages

Lecture

Lecture

72 pages

Lecture

Lecture

66 pages

Lecture

Lecture

54 pages

Lecture

Lecture

98 pages

Lecture

Lecture

57 pages

Lecture

Lecture

75 pages

Lecture

Lecture

48 pages

lecture

lecture

53 pages

Lecture

Lecture

72 pages

Lecture

Lecture

53 pages

Lecture

Lecture

84 pages

Lecture

Lecture

55 pages

Lecture

Lecture

15 pages

Lecture

Lecture

6 pages

Lecture

Lecture

38 pages

Lecture

Lecture

71 pages

Lecture

Lecture

110 pages

Lecture

Lecture

70 pages

lecture

lecture

48 pages

lecture

lecture

76 pages

lecture

lecture

48 pages

lecture

lecture

52 pages

lecture

lecture

43 pages

lecture

lecture

81 pages

lecture

lecture

82 pages

lecture

lecture

83 pages

lecture

lecture

64 pages

lecture

lecture

71 pages

lecture

lecture

65 pages

lecture

lecture

56 pages

lecture

lecture

12 pages

lecture

lecture

66 pages

lecture

lecture

50 pages

lecture

lecture

86 pages

lecture

lecture

70 pages

Lecture

Lecture

74 pages

Lecture

Lecture

54 pages

Lecture

Lecture

90 pages

lecture

lecture

78 pages

lecture

lecture

87 pages

Lecture

Lecture

55 pages

Lecture

Lecture

12 pages

lecture21

lecture21

66 pages

Lecture

Lecture

11 pages

lecture

lecture

83 pages

Lecture

Lecture

53 pages

Lecture

Lecture

69 pages

Lecture

Lecture

12 pages

lecture04

lecture04

97 pages

Lecture

Lecture

14 pages

lecture

lecture

75 pages

Lecture

Lecture

74 pages

graphs2

graphs2

8 pages

lecture

lecture

82 pages

Lecture

Lecture

8 pages

lecture

lecture

47 pages

lecture

lecture

91 pages

lecture

lecture

76 pages

lecture

lecture

73 pages

lecture

lecture

10 pages

lecture

lecture

63 pages

lecture

lecture

91 pages

lecture

lecture

79 pages

lecture

lecture

9 pages

lecture

lecture

70 pages

lecture

lecture

86 pages

lecture

lecture

102 pages

lecture

lecture

145 pages

lecture

lecture

91 pages

Lecture

Lecture

87 pages

lecture

lecture

87 pages

Notes

Notes

19 pages

Lecture

Lecture

50 pages

Lecture

Lecture

13 pages

Lecture

Lecture

97 pages

Lecture

Lecture

98 pages

Lecture

Lecture

83 pages

Lecture

Lecture

77 pages

Lecture

Lecture

102 pages

Lecture

Lecture

63 pages

Lecture

Lecture

104 pages

lecture

lecture

41 pages

lecture

lecture

14 pages

Lecture

Lecture

87 pages

Lecture

Lecture

94 pages

lecture

lecture

9 pages

Lecture

Lecture

96 pages

Lecture

Lecture

72 pages

Lecture

Lecture

35 pages

Lecture

Lecture

77 pages

Lecture

Lecture

98 pages

Lecture

Lecture

48 pages

Lecture

Lecture

66 pages

Lecture

Lecture

53 pages

lecture18

lecture18

101 pages

Lecture

Lecture

10 pages

Lecture

Lecture

70 pages

Lecture

Lecture

12 pages

Lecture

Lecture

74 pages

graphs

graphs

10 pages

Lecture

Lecture

62 pages

Lecture

Lecture

11 pages

Lecture

Lecture

71 pages

Lecture

Lecture

42 pages

lecture15

lecture15

72 pages

Lecture

Lecture

82 pages

Load more
Download Generating Functions
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Generating Functions and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Generating Functions 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?