DOC PREVIEW
CMU CS 15251 - lecture

This preview shows page 1-2-3-4 out of 12 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

15-251Great Theoretical Ideas in Computer Science X1 X2 + + X3Lecture 8, September 18, 2008Counting IIIReview from last time...Arrange n symbols: r1 of type 1, r2 of type 2, …, rk of type knr1n-r1r2…n - r1 - r2 - … - rk-1rk(n-r1)!(n-r1-r2)!r2!n!(n-r1)!r1!=…=n!r1!r2! … rk!14!2!3!2!= 3,632,428,800CARNEGIEMELLON5 distinct pirates want to divide 20 identical, indivisible bars of gold. How many different ways can they divide up the loot?Sequences with 20 G’s and 4 /’sHow many different ways to divide up the loot?244How many different ways can n distinct pirates divide k identical, indivisible bars of gold?n + k - 1n - 1n + k - 1k=How many integer solutions to the following equations?x1 + x2 + x3 + … + xn = kx1, x2, x3, …, xn ! 0n + k - 1n - 1n + k - 1k=Identical/Distinct DiceSuppose that we roll seven diceHow many different outcomes are there, if order matters?67What if order doesn’t matter?(E.g., Yahtzee)127(Corresponds to 6 pirates and 7 bars of gold)Identical/Distinct ObjectsIf we are putting k objects into n distinct bins.Objects are distinguishablenkObjects are indistinguishablek+n-1kbinomial expressionBinomial CoefficientsThe Binomial Formulan1(1+X)n =n0X0+ X1+…+nnXnWhat is the coefficient of (X1r1X2r2…Xkrk)in the expansion of(X1+X2+X3+…+Xk)n?n!r1!r2!...rk!And now for some more counting...Power Series Representation(1+X)n =nkXk!k = 0nnkXk!k = 0"=“Product form” or“Generating form”“Power Series” or “Taylor Series” ExpansionFor k>n,nk= 0By playing these two representations against each other we obtain a new representation of a previous insight:(1+X)n =nkXk!k = 0nLet x = 1,nk!k = 0n2n =The number of subsets of an n-element setBy varying x, we can discover new identities:(1+X)n =nkXk!k = 0nLet x = -1,nk!k = 0n0 =(-1)kEquivalently,nk!k evennnk!k oddn=The number of subsets with even size is the same as the number of subsets with odd sizeProofs that work by manipulating algebraic forms are called “algebraic” arguments. Proofs that build a bijection are called “combinatorial” arguments(1+X)n =nkXk!k = 0nLet On be the set of binary strings of length n with an odd number of ones.Let En be the set of binary strings of length n with an even number of ones.We just saw an algebraic proof that |On | = | En |nk!k evennnk!k oddn=A Combinatorial ProofLet On be the set of binary strings of length n with an odd number of onesLet En be the set of binary strings of length n with an even number of onesA combinatorial proof must construct a bijection between On and En An Attempt at a BijectionLet fn be the function that takes an n-bit string and flips all its bitsfn is clearly a one-to-one and onto function...but do even n work? In f6 we havefor odd n. E.g. in f7 we have:110011 ! 001100101010 ! 0101010010011 ! 11011001001101 ! 0110010Uh oh. Complementing maps evens to evens!A Correspondence That Works for all nLet fn be the function that takes an n-bit string and flips only the first bit. For example,0010011 ! 10100111001101 ! 0001101110011 ! 010011101010 ! 001010The binomial coefficients have so many representations that many fundamental mathematical identities emerge…(1+X)n =nkXk!k = 0nnkn-1kn-1k-1+=Set of allk-subsetsof {1..n}Either wedo not pick n:then we have topick k elementsout of the remaining n-1.Or wedo pick n:then we have topick k-1 elts.out of the remaining n-1.The Binomial Formula(1+X)0 =(1+X)1 =(1+X)2 =(1+X)3 =(1+X)4 =11 + 1X1 + 2X + 1X21 + 3X + 3X2 + 1X31 + 4X + 6X2 + 4X3 + 1X4Pascal’s Triangle: kth row are coefficients of (1+X)kInductive definition of kth entry of nth row:Pascal(n,0) = Pascal (n,n) = 1; Pascal(n,k) = Pascal(n-1,k-1) + Pascal(n-1,k)“Pascal’s Triangle”00= 110= 111= 120= 121= 222= 1• Al-Karaji, Baghdad 953-1029• Chu Shin-Chieh 1303• Blaise Pascal 165430= 131= 332= 333= 1Pascal’s Triangle“It is extraordinaryhow fertile inproperties thetriangle is.Everyone cantry hishand”11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 111 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 1Summing the Rows++ ++ + ++ + + ++ + + + ++ + + + + +nk!k = 0n2n == 1= 2= 4= 8= 16= 32= 6411 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 11 + 15 + 15 + 1 6 + 20 + 6=Odds and Evens11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 1Summing on 1st Avenue!i = 1ni1=!i = 1nin+12=Summing on kth Avenue!i = knikn+1k+1=11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 1Fibonacci Numbers= 2= 3= 5= 8= 1311 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 111 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 1Sums of Squares2 2 22 2 2 211 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 1Al-Karaji Squares+2#+2#+2#+2#+2#= 1= 4= 9= 16= 25= 36Pascal Mod 2All these properties can be proved inductively and algebraically. We will give combinatorial proofs using the Manhattan block walking representation of binomial coefficientsHow many shortest routes from A to B?BA105Manhattanjth street kth avenue1024301234There are shortest routes from (0,0) to (j,k)j+kkManhattanLevel n kth avenue1024301234There are shortest routes from (0,0) to (n-k,k)nkManhattanLevel n kth avenue1024301234There areshortest routes from (0,0) tonklevel n and kth avenueLevel n kth avenue10243012341111111112334461155101066151520Level n kth avenue102431111111112334461155101066151520nkn-1k-1n-1k=++Level n kth avenue10243012342nnnk!k = 0n2=Level n kth avenue1024301234n+1k+1ik!i = kn=Handout on generating functions• Polynomials count• Binomial formula• Combinatorial proofs


View Full Document

CMU CS 15251 - lecture

Documents in this Course
lecture

lecture

66 pages

lecture

lecture

79 pages

lecture

lecture

111 pages

lecture

lecture

85 pages

lecture17

lecture17

64 pages

Lecture

Lecture

85 pages

Lecture

Lecture

71 pages

Lecture

Lecture

70 pages

Lecture

Lecture

11 pages

Lecture

Lecture

45 pages

Lecture

Lecture

50 pages

Lecture

Lecture

93 pages

Lecture

Lecture

93 pages

Lecture

Lecture

35 pages

Lecture

Lecture

98 pages

Lecture

Lecture

74 pages

Lecture

Lecture

13 pages

Lecture

Lecture

15 pages

Lecture

Lecture

66 pages

Lecture

Lecture

82 pages

Lecture

Lecture

15 pages

Lecture

Lecture

47 pages

Lecture

Lecture

69 pages

Lecture

Lecture

13 pages

Lecture

Lecture

67 pages

Lecture

Lecture

68 pages

Lecture

Lecture

69 pages

lecture03

lecture03

44 pages

Lecture

Lecture

69 pages

Lecture

Lecture

68 pages

Lecture

Lecture

55 pages

Lecture

Lecture

79 pages

Lecture

Lecture

85 pages

Lecture

Lecture

87 pages

Lecture

Lecture

85 pages

Lecture

Lecture

103 pages

Lecture

Lecture

9 pages

Lecture

Lecture

83 pages

Lecture

Lecture

8 pages

lecture03

lecture03

68 pages

lecture24

lecture24

78 pages

lecture03

lecture03

72 pages

Thales

Thales

129 pages

lecture13

lecture13

81 pages

Lecture

Lecture

64 pages

lecture01

lecture01

59 pages

lecture11

lecture11

105 pages

Lecture

Lecture

89 pages

Lecture

Lecture

74 pages

lecture25

lecture25

57 pages

Lecture

Lecture

99 pages

lecture

lecture

50 pages

lecture

lecture

14 pages

Lecture

Lecture

78 pages

lecture

lecture

8 pages

Lecture

Lecture

98 pages

lecture

lecture

83 pages

lecture23

lecture23

88 pages

lecture

lecture

64 pages

lecture

lecture

72 pages

Lecture

Lecture

88 pages

lecture

lecture

79 pages

Lecture

Lecture

60 pages

lecture

lecture

74 pages

lecture19

lecture19

72 pages

lecture25

lecture25

86 pages

lecture

lecture

13 pages

lecture17

lecture17

79 pages

lecture

lecture

91 pages

lecture

lecture

78 pages

Lecture

Lecture

11 pages

Lecture

Lecture

54 pages

lecture

lecture

72 pages

lecture

lecture

119 pages

lecture

lecture

167 pages

lecture

lecture

73 pages

lecture

lecture

73 pages

lecture

lecture

83 pages

lecture

lecture

49 pages

lecture

lecture

16 pages

lecture

lecture

67 pages

lecture

lecture

81 pages

lecture

lecture

72 pages

lecture

lecture

57 pages

lecture16

lecture16

82 pages

lecture21

lecture21

46 pages

Lecture

Lecture

92 pages

Lecture

Lecture

14 pages

Lecture

Lecture

49 pages

Lecture

Lecture

132 pages

Lecture

Lecture

101 pages

Lecture

Lecture

98 pages

Lecture

Lecture

59 pages

Lecture

Lecture

64 pages

Lecture

Lecture

106 pages

Lecture

Lecture

70 pages

Lecture

Lecture

80 pages

Lecture

Lecture

76 pages

Lecture

Lecture

91 pages

Lecture

Lecture

112 pages

Lecture

Lecture

91 pages

Lecture

Lecture

10 pages

Lecture

Lecture

39 pages

Lecture

Lecture

79 pages

Lecture

Lecture

74 pages

Lecture

Lecture

44 pages

Lecture

Lecture

39 pages

Lecture

Lecture

99 pages

Lecture

Lecture

44 pages

Lecture

Lecture

59 pages

Lecture

Lecture

36 pages

lecture17

lecture17

36 pages

lecture

lecture

71 pages

lecture

lecture

79 pages

lecture

lecture

12 pages

lecture

lecture

43 pages

lecture

lecture

87 pages

lecture

lecture

35 pages

lecture03

lecture03

23 pages

lecture

lecture

68 pages

lecture

lecture

74 pages

lecture

lecture

21 pages

lecture

lecture

79 pages

lecture

lecture

15 pages

lecture

lecture

83 pages

lecture

lecture

13 pages

Lecture

Lecture

53 pages

lecture

lecture

55 pages

lecture

lecture

49 pages

lecture

lecture

10 pages

lecture

lecture

70 pages

lecture

lecture

12 pages

Lecture

Lecture

105 pages

Lecture

Lecture

9 pages

Lecture

Lecture

72 pages

Lecture

Lecture

66 pages

Lecture

Lecture

54 pages

Lecture

Lecture

98 pages

Lecture

Lecture

57 pages

Lecture

Lecture

75 pages

Lecture

Lecture

48 pages

lecture

lecture

53 pages

Lecture

Lecture

72 pages

Lecture

Lecture

53 pages

Lecture

Lecture

84 pages

Lecture

Lecture

55 pages

Lecture

Lecture

15 pages

Lecture

Lecture

6 pages

Lecture

Lecture

38 pages

Lecture

Lecture

71 pages

Lecture

Lecture

110 pages

Lecture

Lecture

70 pages

lecture

lecture

48 pages

lecture

lecture

76 pages

lecture

lecture

48 pages

lecture

lecture

52 pages

lecture

lecture

43 pages

lecture

lecture

81 pages

lecture

lecture

82 pages

lecture

lecture

83 pages

lecture

lecture

64 pages

lecture

lecture

71 pages

lecture

lecture

65 pages

lecture

lecture

56 pages

lecture

lecture

66 pages

lecture

lecture

50 pages

lecture

lecture

86 pages

lecture

lecture

70 pages

Lecture

Lecture

74 pages

Lecture

Lecture

54 pages

Lecture

Lecture

90 pages

lecture

lecture

78 pages

lecture

lecture

87 pages

Lecture

Lecture

55 pages

Lecture

Lecture

12 pages

lecture21

lecture21

66 pages

Lecture

Lecture

11 pages

lecture

lecture

83 pages

Lecture

Lecture

53 pages

Lecture

Lecture

69 pages

Lecture

Lecture

12 pages

lecture04

lecture04

97 pages

Lecture

Lecture

14 pages

lecture

lecture

75 pages

Lecture

Lecture

74 pages

graphs2

graphs2

8 pages

lecture

lecture

82 pages

Lecture

Lecture

8 pages

lecture

lecture

47 pages

lecture

lecture

91 pages

lecture

lecture

76 pages

lecture

lecture

73 pages

lecture

lecture

10 pages

lecture

lecture

63 pages

lecture

lecture

91 pages

lecture

lecture

79 pages

lecture

lecture

9 pages

lecture

lecture

70 pages

lecture

lecture

86 pages

lecture

lecture

102 pages

lecture

lecture

145 pages

lecture

lecture

91 pages

Lecture

Lecture

87 pages

lecture

lecture

87 pages

Notes

Notes

19 pages

Lecture

Lecture

50 pages

Lecture

Lecture

13 pages

Lecture

Lecture

97 pages

Lecture

Lecture

98 pages

Lecture

Lecture

83 pages

Lecture

Lecture

77 pages

Lecture

Lecture

102 pages

Lecture

Lecture

63 pages

Lecture

Lecture

104 pages

lecture

lecture

41 pages

lecture

lecture

14 pages

Lecture

Lecture

87 pages

Lecture

Lecture

94 pages

lecture

lecture

9 pages

Lecture

Lecture

96 pages

Lecture

Lecture

72 pages

Lecture

Lecture

35 pages

Lecture

Lecture

77 pages

Lecture

Lecture

98 pages

Lecture

Lecture

48 pages

Lecture

Lecture

66 pages

Lecture

Lecture

53 pages

lecture18

lecture18

101 pages

Lecture

Lecture

10 pages

Lecture

Lecture

70 pages

Lecture

Lecture

12 pages

Lecture

Lecture

74 pages

graphs

graphs

10 pages

Lecture

Lecture

62 pages

Lecture

Lecture

11 pages

Lecture

Lecture

71 pages

Lecture

Lecture

42 pages

lecture15

lecture15

72 pages

Lecture

Lecture

82 pages

Load more
Download lecture
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view lecture and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view lecture 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?