DOC PREVIEW
CMU CS 10701 - Recitation

This preview shows page 1-2 out of 5 pages.

Save
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Multivariate Gaussian Distribution Leon Gu CSD CMU Multivariate Gaussian p x 1 2 n 2 1 2 1 exp x T 1 x 2 I Moment Parameterization E X Cov X E X X T symmetric positive semi definite matrix I Mahalanobis distance 42 x T 1 x I Canonical Parameterization 1 p x exp a T x xT x 2 where 1 1 a 12 n log 2 log T I Tons of applications MoG FA PPCA Kalman Filter Multivariate Gaussian P X1 X2 P X1 X2 Joint Gaussian 1 2 11 12 21 22 P X2 Marginal Gaussian m 2 2 m 2 2 P X1 X2 x2 Conditional Gaussian 1 2 1 12 1 22 x2 2 1 2 11 12 1 22 21 Operations on Gaussian R V The linear transform of a gaussian r v is a guassian Remember that no matter how x is distributed E AX b AE X b Cov AX b ACov X AT this means that for gaussian distributed quantities X N AX b N A b A AT The sum of two independent gaussian r v is a gaussian Y X1 X2 X1 X2 Y 1 2 Y 1 2 The multiplication of two gaussian functions is another gaussian function although no longer normalized N a A N b B N c C where C A 1 B 1 1 c CA 1 a CB 1 b Maximum Likelihood Estimate of and Given a set of i i d data X x1 xN drawn from N x we want to estimate by MLE The log likelihood function is ln p X N 2 ln N 1 X T xn 2 n 1 1 xn const Taking its derivative w r t and setting it to zero we have N 1 X N n 1 xn Rewrite the log likelihood using trace trick ln p X N P ln 1 xn T 1 xn const N 2 2 n 1 N P ln 1 Trace 1 xn xn T N 2 2 n 1 N P N ln 1 Trace 1 xn xn T 2 2 n 1 1 Taking the derivative w r t and using 1 T A Tr AB A Tr BA B we obtain N 1 X N n 1 A T xn xn log A A T 2


View Full Document

CMU CS 10701 - Recitation

Documents in this Course
lecture

lecture

12 pages

lecture

lecture

17 pages

HMMs

HMMs

40 pages

lecture

lecture

15 pages

lecture

lecture

20 pages

Notes

Notes

10 pages

Notes

Notes

15 pages

Lecture

Lecture

22 pages

Lecture

Lecture

13 pages

Lecture

Lecture

24 pages

Lecture9

Lecture9

38 pages

lecture

lecture

26 pages

lecture

lecture

13 pages

Lecture

Lecture

5 pages

lecture

lecture

18 pages

lecture

lecture

22 pages

Boosting

Boosting

11 pages

lecture

lecture

16 pages

lecture

lecture

20 pages

Lecture

Lecture

20 pages

Lecture

Lecture

39 pages

Lecture

Lecture

14 pages

Lecture

Lecture

18 pages

Lecture

Lecture

13 pages

Exam

Exam

10 pages

Lecture

Lecture

27 pages

Lecture

Lecture

15 pages

Lecture

Lecture

24 pages

Lecture

Lecture

16 pages

Lecture

Lecture

23 pages

Lecture6

Lecture6

28 pages

Notes

Notes

34 pages

lecture

lecture

15 pages

Midterm

Midterm

11 pages

lecture

lecture

11 pages

lecture

lecture

23 pages

Boosting

Boosting

35 pages

Lecture

Lecture

49 pages

Lecture

Lecture

22 pages

Lecture

Lecture

16 pages

Lecture

Lecture

18 pages

Lecture

Lecture

35 pages

lecture

lecture

22 pages

lecture

lecture

24 pages

Midterm

Midterm

17 pages

exam

exam

15 pages

Lecture12

Lecture12

32 pages

lecture

lecture

19 pages

Lecture

Lecture

32 pages

boosting

boosting

11 pages

pca-mdps

pca-mdps

56 pages

bns

bns

45 pages

mdps

mdps

42 pages

svms

svms

10 pages

Notes

Notes

12 pages

lecture

lecture

42 pages

lecture

lecture

29 pages

lecture

lecture

15 pages

Lecture

Lecture

12 pages

Lecture

Lecture

24 pages

Lecture

Lecture

22 pages

Midterm

Midterm

5 pages

mdps-rl

mdps-rl

26 pages

Load more
Download Recitation
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Recitation and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Recitation and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?