DOC PREVIEW
TAMU MATH 412 - Lect8web

This preview shows page 1-2-3-4-5 out of 16 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Math 412-501Theory of Partial Differential EquationsLecture 8: Fourier’s solution of theinitial-boundary value problem (continued).How do we solve the initial-boundary value problem?∂u∂t= k∂2u∂x2, 0 ≤ x ≤ L,u(x, 0) = f (x), u(0, t) = u(L, t) = 0.• Expand the function f into a seriesf (x) =X∞n=1BnsinnπxL.• Write the solution:u(x, t) =X∞n=1Bnexp−n2π2L2ktsinnπxL.(Fourier’s solution)How do we expand initial data into a series?f (x) =X∞n=1BnsinnπxL.Assume that such an expansion exists and the seriesconverges uniformly. ThenZL0f (x)g(x) dx =X∞n=1BnZL0sinnπxLg(x) dxfor any continuous function g : [0, L] → R.In particular, for m = 1, 2, . . . we haveZL0f (x) sinmπxLdx =X∞n=1BnZL0sinnπxLsinmπxLdx.It turns out thatZL0sinnπxLsinmπxLdx =(12L if m = n,0 if m 6= n.HenceZL0f (x) sinmπxLdx = Bm·12L.ThereforeBm=2LZL0f (x) sinmπxLdx.How do we solve the initial-boundary value problem?∂u∂t= k∂2u∂x2, 0 ≤ x ≤ L,u(x, 0) = f (x), u(0, t) = u(L, t) = 0.• Expand the function f into a seriesf (x) =X∞n=1BnsinnπxL,whereBn=2LZL0f (ξ) sinnπξLdξ.• Write the solution:u(x, t) =X∞n=1Bnexp−n2π2L2ktsinnπxL.Evaluation of an integralZL0sinnπxLsinmπxLdx =LπZL0sinnπxLsinmπxLd(πxL)=LπZπ0sin ny · sin my dy=L2πZπ0cos (n − m)y − cos (n + m)ydy.Let N ∈ Z. If N 6= 0 thenZπ0cos Ny dy =sin NyNπ0= 0.If N = 0 thenZπ0cos Ny dy =Zπ0dy = π.Example∂u∂t= k∂2u∂x2, 0 ≤ x ≤ L,u(x, 0) = 100, u(0, t) = u(L, t) = 0.Fourier’s expansion:100 =X∞n=1BnsinnπxL(0 < x < L),whereBn=2LZL0100 sinnπξLdξ =200πZL0sinnπξLdπξL=200πZπ0sin ny dy =200(1 − cos nπ)nπ.Bn= 0 if n is even, and Bn=400nπif n is odd.n is odd =⇒ n = 2m − 1, m a positive integer.100 =∞Xm=1400(2m−1)πsin(2m−1)πxL, 0 < x < L.Fourier’s solution:u(x, t) =∞Xm=1400(2m−1)πexp−(2m−1)2π2L2ktsin(2m−1)πxL.For a large t,u(x, t) ≈400πexp−π2L2ktsinπxL.More boundary conditions for the heat equationInitial-boundary value problem:∂u∂t= k∂2u∂x2, 0 ≤ x ≤ L,u(x, 0) = f (t),∂u∂x(0, t) =∂u∂x(L, t) = 0.(insulated ends)∂u∂t= k∂2u∂x2, −L ≤ x ≤ L,u(x, 0) = f (t),u(−L, t) = u(L, t),∂u∂x(−L, t) =∂u∂x(L, t).(periodic boundary conditions)Heat conduction in a thin circular ringSeparation of variables: u(x, t) = φ(x)G (t).PDE holds if for some λ = const,d2φdx2= −λφ,dGdt= −λkG =⇒ G (t) = C0exp(−λkt).Boundary conditions∂u∂x(0, t) =∂u∂x(L, t) = 0 hold ifφ′(0) = φ′(L) = 0.Boundary conditions u(−L, t) = u(L, t),∂u∂x(−L, t) =∂u∂x(L, t) = 0 hold ifφ(−L) = φ(L), φ′(−L) = φ′(L).Eigenvalue problem (insulated ends):φ′′= −λφ, φ′(0) = φ′(L) = 0.Three cases: λ > 0, λ = 0, λ < 0.Case 1: λ > 0. φ(x) = C1cos µx + C2sin µx,where λ = µ2, µ > 0.φ′(0) = φ′(L) = 0 =⇒ C2= 0, −C1µ sin µL = 0.A nonzero solution exists if µL = nπ, n ∈ Z.So λn= (nπL)2, n = 1, 2, . . . are eigenvalues andφn(x) = cosnπxLare corresponding eigenfunctions.The only other eigenvalue is λ0= 0, with theeigenfunction φ0= 1.Eigenvalue problem (circular ring):φ′′= −λφ, φ(−L) = φ(L), φ′(−L) = φ′(L).Case 1: λ > 0. φ(x) = C1cos µx + C2sin µx,where λ = µ2, µ > 0.φ(−L) = φ(L) =⇒ C2sin µL = 0.φ′(−L) = φ′(L) =⇒ −C1µ sin µL = 0.A nonzero solution exists if µL = nπ, n ∈ Z.So λn= (nπL)2, n = 1, 2, . . . are multipleeigenvalues while φn(x) = cosnπxLandψn(x) = sinnπxLare corresponding eigenfunctions.The only other eigenvalue is λ0= 0, with theeigenfunction φ0= 1.Fourier’s solution (insulated ends)∂u∂t= k∂2u∂x2, 0 ≤ x ≤ L,u(x, 0) = f (x),∂u∂x(0, t) =∂u∂x(L, t) = 0.• Expand the function f into a seriesf (x) = A0+X∞n=1AncosnπxL.• Write the solution:u(x, t) = A0+X∞n=1Anexp−n2π2L2ktcosnπxL.Fourier’s solution (circular ring)∂u∂t= k∂2u∂x2, −L ≤ x ≤ L,u(x, 0) = f (t),u(−L, t) = u(L, t),∂u∂x(−L, t) =∂u∂x(L, t).• Expand the function f into a seriesf (x) = A0+∞Xn=1AncosnπxL+ BnsinnπxL.• Write the solution:u(x, t) = A0+∞Xn=1exp−n2π2L2ktAncosnπxL+


View Full Document

TAMU MATH 412 - Lect8web

Download Lect8web
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lect8web and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lect8web 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?