DOC PREVIEW
TAMU MATH 412 - Lecture3-10web

This preview shows page 1-2-3-4-5-6 out of 19 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 19 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Math 412-501Theory of Partial Differential EquationsLecture 3-10: Applications of Fouriertransforms (continued).Fourier transformGiven a function h : R → C, the functionˆh(ω) = F[h](ω) =12πZ∞−∞h(x)e−iωxdx, ω ∈ Ris called the Fourier transform of h.Given a function H : R → C, the functionˇH(x) = F−1[H](x) =Z∞−∞H(ω)eiωxdω, x ∈ Ris called the inverse Fourier transform of H.Initial value problem for the heat equation:∂u∂t= k∂2u∂x2(−∞ < x < ∞),u(x, 0) = f (x).Solution: u(x, t) =Z∞−∞G (x, ˜x, t) f (˜x) d ˜x,where G (x, ˜x, t) =1√4πkte−(x−˜x)24kt.The solution is in the integral operator form. Thefunction G is called the kernel of the operator.Also, G (x, ˜x, t) is called Green’s function of theproblem.Wave equation on an infinite intervalInitial value problem:∂2u∂t2= c2∂2u∂x2(−∞ < x < ∞),u(x, 0) = f (x),∂u∂t(x, 0) = g(x).We assume that f , g are smo oth and rapidlydecaying as x → ∞. We search for a solution withthe same properties.Apply the Fourier transform (relative to x) to bothsides of the equation:F∂2u∂t2= c2F∂2u∂x2.Let U = F[u]. That is,U(ω, t) = F[u(·, t)](ω) =12πZ∞−∞u(x, t)e−iωxdx.Then F∂2u∂t2=∂2U∂t2, F∂2u∂x2= (iω)2U(ω, t).Hence∂2U∂t2= c2(iω)2U(ω, t) = −c2ω2U(ω, t).General solution: U(ω, t) = a cos cωt + b sin cωt(ω 6= 0), where a = a(ω), b = b(ω).Apply the Fourier transform to the initial conditions:U(ω, 0) =ˆf (ω),∂U∂t(ω, 0) = ˆg(ω).Therefore U(ω, t) =ˆf (ω) cos cωt + ˆg(ω)sin cωtcω.We know that\χ[−a,a](ω) =sin aωπω, a > 0.Hence F−1sin cωtcω =πcχ[−ct,ct], t > 0. ThenU(ω, t) =12(eicωtˆf (ω) + e−icωtˆf (ω)+πcˆg(ω) \χ[−ct,ct](ω).By the shift theorem and the convolution theorem,u(x, t) =12f (x + ct) + f (x − ct)+12cg ∗ χ[−ct,ct](x).g ∗ χ[−ct,ct](x) =Z∞−∞g(˜x)χ[−ct,ct](x − ˜x) d ˜x=Zx+ctx−ctg(˜x) d ˜x.Initial value problem:∂2u∂t2= c2∂2u∂x2(−∞ < x < ∞),u(x, 0) = f (x),∂u∂t(x, 0) = g (x).Solution:u(x, t) =12f (x + ct) + f (x − ct)+12cZx+ctx−ctg(˜x) d ˜x.Sine and cosine transforms of derivativesSine transform: S[f ](ω) =2πZ∞0f (x) sin ωx dxCosine transform: C[f ](ω) =2πZ∞0f (x) cos ωx dxAssume that f and f′are continuous and absolutelyintegrable on [0, ∞). Then f (x) → 0 as x → ∞.HenceS[f′](ω) =2πZ∞0f′(x) sin ωx dx=2πf (x) sin ωx∞x=0−2πZ∞0f (x)(sin ωx)′dx= −ω C [f ](ω).Likewise, C [f′](ω) =2πZ∞0f′(x) cos ωx dx=2πf (x) cos ωx∞x=0−2πZ∞0f (x)(cos ωx)′dx= −2πf (0) + ω S[f ](ω).S[f′](ω) = −ω C [f ](ω)C [f′](ω) = −2πf (0) + ω S[f ](ω)Now assume that f , f′, f′′are continuous andabsolutely integrable on [0, ∞). By the above,S[f′′](ω) = −ω C [f′](ω) =2πf (0)ω − ω2S[f ](ω),C [f′′](ω) = −2πf′(0) + ω S[f′](ω) = −2πf′(0) − ω2C [f ](ω).S[f′′](ω) =2πf (0)ω − ω2S[f ](ω)C [f′′](ω) = −2πf′(0) − ω2C [f ](ω)Fourier transform: F[f ](ω) =12πZ∞−∞f (x)e−iωxdxSine transform: S[f ](ω) =2πZ∞0f (x) sin ωx dxCosine transform: C[f ](ω) =2πZ∞0f (x) cos ωx dxProposition Suppose thatR∞−∞|f (x)|dx < ∞.(i) If f is even, f (−x) = f (x), then F[f ] is alsoeven; moreover, C [f ](ω) = 2F[f ](ω) for all ω > 0.(ii) If f is odd, f (−x) = −f (x), then F[f ] is alsoodd; moreover, S[f ](ω) = 2i F[f ](ω) for all ω > 0.Heat equation on a semi-infinite intervalInitial-boundary value problem:∂u∂t= k∂2u∂x2(0 < x < ∞),∂u∂x(0, t) = 0,u(x, 0) = f (x).We search for a solution which is smooth and rapidlydecaying as x → ∞. Apply the cosine transform(relative to x) to both sides of the equation:C∂u∂t= k C∂2u∂x2.Let U(ω, t) = C [u](ω) =2πZ∞0u(x, t) cos ωx dx.Then C∂u∂t=∂U∂t,C∂2u∂x2= −ω2U(ω, t)−2π∂u∂x(0, t) = −ω2U(ω, t).Hence∂U∂t= −kω2U(ω, t).General solution: U(ω, t) = ce−ω2kt, where c = c(ω).Initial condition u(x, 0) = f (x) implies thatU(ω, 0) = C [f ](ω).Therefore U(ω, t) = C [f ](ω) e−ω2kt.Solution: u(x, t) =Z∞0c(ω)e−ω2ktcos ωx dω,where c(ω) =2πZ∞0f (˜x) cos ω˜x d ˜x.The same solution can be obtained by separation ofvariables. The solution can be rewritten in theintegral operator form:u(x, t) =Z∞0G (x, ˜x, t)f (˜x) d ˜x,where G (x, ˜x, t) =2πZ∞0e−ω2ktcos ωx cos ω˜x dω.Green’s function G (x, ˜x, t) ==1πZ∞0e−ω2ktcos (x − ˜x)ω + cos (x + ˜x)ωdωWe know that1πZ∞0e−αω2cos ωy dω =1√4παe−y24α, α > 0.It follows thatG (x, ˜x, t) =1√4πkte−(x−˜x)24kt+ e−(x+˜x)24kt.Laplace’s equation in a half-planeBoundary value problem:∂2u∂x2+∂2u∂y2= 0 (−∞ < x < ∞, 0 < y < ∞),u(x, 0) = f (x).We assume that f is smooth and rapidly decaying atinfinity. We search for a solution with the sameproperties.Apply the Fourier transform Fx(relative to x) toboth sides of the equation:Fx∂2u∂x2+ Fx∂2u∂y2= 0.Let U(ω, y) = Fx[u](ω) =12πZ∞−∞u(x, y)e−iωxdx.Then Fx∂2u∂y2=∂2U∂y2, Fx∂2u∂x2= (iω)2U(ω, y ).Hence∂2U∂y2= −(iω)2U(ω, y ) = ω2U(ω, y ).General solution: U(ω, y) = aeωy+ be−ωy(ω 6= 0),where a = a(ω), b = b(ω).Initial condition u(x, 0) = f (x) implies thatU(ω, 0) =ˆf (ω).Also, we have a boundary condition limy→∞U(ω, y ) = 0.Since U(ω, y) → 0 as y → ∞, it follows thatU(ω, y ) =(b(ω)e−ωyif ω > 0,a(ω)eωyif ω < 0.Since U(ω, 0) =ˆf (ω), it follows thatU(ω, y ) =ˆf (ω)e−y|ω|.It turns out that F−1[e−α|ω|](x) =2αx2+ α2, α > 0.Hence U(ω, y) =ˆf (ω)ˆg(ω, y), whereg(x, y ) =2yx2+ y2.By the convolution theorem, u(x, y) = (2π)−1f ∗ g.Boundary value problem:∂2u∂x2+∂2u∂y2= 0 (−∞ < x < ∞, 0 < y < ∞),u(x, 0) = f (x).Solution:u(x, y) =12πZ∞−∞g(x − ˜x, y )f (˜x) d ˜x=1πZ∞−∞f (˜x)y(x − ˜x)2+ y2d


View Full Document

TAMU MATH 412 - Lecture3-10web

Download Lecture3-10web
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture3-10web and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture3-10web 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?