DOC PREVIEW
TAMU MATH 412 - Lecture4-4web

This preview shows page 1-2-3-4-5-6 out of 18 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Math 412-501Theory of Partial Differential EquationsLecture 4-4:Green’s function for the wave equation.Green’s function for the heat equationGreen’s function G (x, t; x0, t0) for the heat equationon the infinite interval satisfies∂G∂t= k∂2G∂x2+ δ(x − x0) δ(t − t0)subject to the causality principle:G (x, t; x0, t0) = 0 for t < t0.For t > t0we have thatG (x, t; x0, t0) =1p4πk(t − t0)e−(x −x0)24k(t−t0).General nonhomogeneous problemInitial value problem:∂u∂t= k∂2u∂x2+ Q(x, t) (−∞ < x < ∞, t > 0),u(x, 0) = f (x).Solution: u(x, t) ==Z∞0Z∞−∞G (x, t; x0, t0) Q(x0, t0) dx0dt0+Z∞−∞G (x, t; x0, 0) f (x0) dx0.General nonhomogeneous problemInitial value problem:∂u∂t= k∂2u∂x2+ Q(x, t) (−∞ < x < ∞, t > 0),u(x, 0) = f (x).Solution: u(x, t) ==Zt0Z∞−∞1p4πk(t − t0)e−(x −x0)24k(t−t0)Q(x0, t0) dx0dt0+Z∞−∞1√4πkte−(x −x0)24ktf (x0) dx0.Green’s function for the wave equationGreen’s function G (x, t; x0, t0) for the infiniteinterval describes vibrations of an infinite stringcaused by an instant unit force which is applied attime t0to the point x0.Formally, G solves the equation∂2G∂t2= c2∂2G∂x2+ δ(x −x0) δ(t − t0)subject to the conditionG (x, t; x0, t0) = 0 for t < t0.(causality principle)Apply the Fourier transform (relative to x) to bothsides of the equation:Fx∂2G∂t2= c2Fx∂2G∂x2+ Fx[δ(x −x0)] δ(t − t0).LetbG (ω, t; x0, t0) denote the Fourier transform of Grelative to x:bG (ω, t; x0, t0) =12πZ∞−∞G (x, t; x0, t0)e−i ωxdx.Fx∂2G∂t2=∂2bG∂t2, Fx∂2G∂x2= (iω)2bG = −ω2bG ,Fx[δ(x −x0)](ω) =12πe−i ωx0.=⇒∂2bG∂t2= −c2ω2bG +e−i ωx02πδ(t − t0).Besides,bG (ω, t; x0, t0) = 0 for t < t0.It follows thatbG (ω, t; x0, t0) =(0 for t < t0,aeicωt+ be−icωtfor t > t0,where a = a(ω, x0, t0), b = b(ω, x0, t0);∂bG∂tt=t0+−∂bG∂tt=t0−=e−i ωx02π;bGt=t0−=bGt=t0+.bGt=t0+= aeicωt0+ be−icωt0= 0,∂bG∂tt=t0+= icω · aeicωt0− icω · be−icωt0=e−i ωx02π.Then a =e−i ωx04πicωe−icωt0, b = −e−i ωx04πicωeicωt0.HencebG =e−i ωx04πicωeicω(t−t0)− e−icω(t−t0)=e−i ωx02csin(cω(t − t0))πωif t > t0.G (x, t; x0, t0) =(12cif |x −x0| < c(t − t0),0 if |x −x0| > c(t − t0).G (x, t; x0, t0) as a function of xNonhomogeneous problemsInitial value problem #1:∂2u∂t2= c2∂2u∂x2+ Q(x, t) (−∞ < x < ∞, t > 0),u(x, 0) = 0,∂u∂t(x, 0) = 0.Solution: u(x, t) =Z∞0Z∞−∞G (x, t; x0, t0) Q(x0, t0) dx0dt0=12cZZDx ,tQ(x0, t0) dx0dt0,where Dx ,t= {(x0, t0) : 0 < t0< t − c−1|x −x0|}.Domain of influence Dx ,tNonhomogeneous problemsInitial value problem #2:∂2u∂t2= c2∂2u∂x2(−∞ < x < ∞, t > 0),u(x, 0) = 0,∂u∂t(x, 0) = g(x).Solution: u(x, t) ==Z∞−∞G (x, t; x0, 0) g(x0) dx0=12cZx +ctx −ctg(x0) dx0.Nonhomogeneous problemsInitial value problem #3:∂2u∂t2= c2∂2u∂x2(−∞ < x < ∞, t > 0),u(x, 0) = f (x),∂u∂t(x, 0) = 0.Solution: u(x, t) =Z∞−∞G1(x, t; x0, 0) f (x0) dx0,where G1(x, t; x0, t0) is the solution of the equation∂2G1∂t2= c2∂2G1∂x2+ δ(x −x0) δ′(t − t0)subject to the causality principle.Since∂2G∂t2= c2∂2G∂x2+ δ(x −x0) δ(t − t0),it follows that G1= −∂G∂t0.Let H denote the Heaviside function: H(z) = 0 forz < 0 and H(z) = 1 for z > 0. ThenG (x, t; x0, t0) =12cHx −x0+ c(t − t0)−− Hx −x0− c(t − t0),∂G∂t0(x, t; x0, t0) = −12δx −x0+ c(t − t0)−−12δx −x0− c(t − t0).Nonhomogeneous problemsInitial value problem #3:∂2u∂t2= c2∂2u∂x2(−∞ < x < ∞, t > 0),u(x, 0) = f (x),∂u∂t(x, 0) = 0.Solution: u(x, t) == −Z∞−∞∂G∂t0(x, t; x0, 0) f (x0) dx0=f (x + ct) + f (x −ct)2.General nonhomogeneous problemInitial value problem:∂2u∂t2= c2∂2u∂x2+ Q(x, t) (−∞ < x < ∞, t > 0),u(x, 0) = f (x),∂u∂t(x, 0) = g(x).Solution: u(x, t) ==Z∞0Z∞−∞G (x, t; x0, t0) Q(x0, t0) dx0dt0−Z∞−∞∂G∂t0(x, t; x0, 0) f (x0) dx0+Z∞−∞G (x, t; x0, 0) g(x0) dx0.General nonhomogeneous problemInitial value problem:∂2u∂t2= c2∂2u∂x2+ Q(x, t) (−∞ < x < ∞, t > 0),u(x, 0) = f (x),∂u∂t(x, 0) = g(x).Solution: u(x, t) ==12cZZDx ,tQ(x0, t0) dx0dt0+f (x + ct) + f (x −ct)2+12cZx +ctx −ctg(x0)


View Full Document

TAMU MATH 412 - Lecture4-4web

Download Lecture4-4web
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture4-4web and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture4-4web 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?