DOC PREVIEW
TAMU MATH 412 - Lecture2-11web

This preview shows page 1-2-3-4-5-6 out of 18 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Math 412-501Theory of Partial Differential EquationsLecture 2-11: Review for Exam 2.Heat conduction in a rectangleInitial-boundary value problem:∂u∂t= k∂2u∂x2+∂2u∂y2(0 < x < L, 0 < y < H),u(x, y, 0) = f (x, y ) (0 < x < L, 0 < y < H),∂u∂x(0, y, t) =∂u∂xu(L, y, t) = 0 (0 < y < H),∂u∂y(x, 0, t) =∂u∂yu(x, H, t) = 0 (0 < x < L).We search for the solution u(x, y, t) as asuperposition of solutions with separated variablesthat satisfy the boundary conditions.Separation of variables: u(x, y, t) = φ(x)h(y)G (t).Substitute this into the heat equation:φ(x)h(y)dGdt= kd2φdx2h(y)G (t) + φ(x)d2hdy2G (t).Divide both sides by k · φ(x)h(y)G (t) = k · u(x, y, t):1kG·dGdt=1φ·d2φdx2+1h·d2hdy2.It follows that1φ·d2φdx2= −λ,1h·d2hdy2= −µ,1kG·dGdt= −λ −µ, where λ and µ are separationconstants.The variables have been sep arated:dGdt= −(λ + µ)kG ,d2φdx2= −λφ,d2hdy2= −µh.Proposition Suppose G , φ, and h are solutions ofthe above ODEs for the same values of λ and µ.Then u(x, y, t) = φ(x)h(y)G (t) is a solution of theheat equation.Boundary conditions∂u∂x(0, y, t) =∂u∂x(L, y, t) = 0hold if φ′(0) = φ′(L) = 0.Boundary conditions∂u∂y(x, 0, t) =∂u∂y(x, H, t) = 0hold if h′(0) = h′(H) = 0.1st eigenvalue problem: φ′′= −λφ, φ′(0) = φ′(L) = 0.Eigenvalues: λn= (nπL)2, n = 0, 1, 2, . . .Eigenfunctions: φ0= 1, φn(x) = cosnπxL, n ≥ 1.2nd eigenvalue problem: h′′= −µh, h′(0) = h′(H) = 0.Eigenvalues: µm= (mπH)2, m = 0, 1, 2, . . .Eigenfunctions: h0= 1, hm(y) = cosmπyH, m ≥ 1.Dependence on t:G′(t) = −(λ + µ)kG (t) =⇒ G (t) = C0e−(λ+µ)ktSolution of the boundary value problem:u(x, y, t) = e−(λn+µm)ktφn(x)hm(y)= exp−((nπL)2+ (mπH)2)kt· cosnπxL· cosmπyH.We are looking for the solution of theinitial-boundary value problem as a superposition ofsolutions with separated variables.u(x, y, t) =X∞n=0X∞m=0Cn,me−(λn+µm)ktφn(x)hm(y)=∞Xn=0∞Xm=0Cn,mexp−((nπL)2+ (mπH)2)kt· cosnπxL· cosmπyHHow do we find coefficients Cn,m?From the initial condit ion u(x, y , 0) = f (x, y).f (x, y) =X∞n=0X∞m=0Cn,mcosnπxLcosmπyH(double Fourier cosine series)How do we solve the heat conduction problem?∂u∂t= k∂2u∂x2+∂2u∂y2(0 < x < L, 0 < y < H),u(x, y, 0) = f (x, y ) (0 < x < L, 0 < y < H),∂u∂x(0, y, t) =∂u∂x(L, y, t) = 0 (0 < y < H),∂u∂y(x, 0, t) =∂u∂y(x, H, t) = 0 (0 < x < L).• Expand f into the double Fourier cosine series:f (x, y) =X∞n=0X∞m=0Cn,mcosnπxLcosmπyH.• Write the solution: u(x, y, t) ==∞Xn=0∞Xm=0Cn,mexp−((nπL)2+ (mπH)2)ktcosnπxLcosmπyH.How do we expand f into the double Fourier cosineseries?f (x, y) =X∞n=0X∞m=0Cn,mcosnπxLcosmπyH.If f (x, y) is smooth then the expansion exists.How do we determine coefficients?Multiply both sides by φN(x)hM(y) and integrateover t he rectangle.ZL0ZH0f (x, y)φN(x)hM(y) dx dy=∞Xn=0∞Xm=0Cn,mZL0ZH0φN(x)hM(y)φn(x)hm(y) dx dy=∞Xn=0∞Xm=0Cn,mZL0φN(x)φn(x) dxZH0hM(y)hm(y) dy.We have the orthogonality relations:ZL0φN(x)φn(x) dx = 0, n 6= N,ZH0hM(y)hm(y) dy = 0, m 6= M.HenceZL0ZH0f (x, y)φN(x)hM(y) dx dy= CN,MZL0φ2N(x) dxZH0h2M(y) dy.It remains to recall thatZL0φ20(x) dx = L,ZL0φ2N(x) dx =L2, N ≥ 1,ZH0h20(x) dx = H,ZH0h2M(x) dx =H2, M ≥ 1.How do we expand f (x, y ) into the double series?f (x, y) =X∞n=0X∞m=0Cn,mcosnπxLcosmπyH,whereC0,0=1LHZL0ZH0f (x, y) dx dy,Cn,0=2LHZL0ZH0f (x, y) cosnπxLdx dy, n ≥ 1,C0,m=2LHZL0ZH0f (x, y) cosmπyHdx dy, m ≥ 1,Cn,m=4LHZL0ZH0f (x, y) cosnπxLcosmπyHdx dy.Laplace’s equation in a semicircleSolve Laplace ’s equation inside a semicircle ofradius a (0 < r < a, 0 < θ < π) subject to theboundary c onditions: u = 0 on the diameter andu(a, θ) = g(θ).Laplace’s e quation in polar coordinates (r , θ):∂2u∂r2+1r∂u∂r+1r2∂2u∂θ2= 0.u = 0 on the diameter =⇒u(r, 0) = u(r, π) = 0 (0 < r < a),u(0, θ) = 0 (0 < θ < π).Separation of variables: u(r , θ) = h(r )φ(θ).Substitute this into Laplace ’s equation:d2hdr2φ(θ) +1rdhdrφ(θ) +1r2h(r)d2φdθ2= 0.Divide both sides by r−2h(r)φ(θ) = r−2u(r, θ):1h·r2d2hdr2+ rdhdr= −1φ·d2φdθ2.It follows that1h·r2d2hdr2+ rdhdr= −1φ·d2φdθ2= λ = const.The variables have been sep arated:r2d2hdr2+ rdhdr= λh,d2φdθ2= −λφ.Proposition Suppose h and φ are solutions of theabove ODEs for th e same value of λ. Thenu(r, θ) = h(r )φ(θ) is a solution of Laplace’sequation.Boundary conditions u(r, 0) = u(r, π) = 0 hold ifφ(0) = φ(π) = 0.Boundary condition u(0, θ) = 0 holds ifh(0) = 0.Euler’s (or equidimensional) equationr2d2hdr2+ rdhdr− λh = 0 (r > 0)λ > 0 =⇒ h(r) = C1rp+ C2r−p(λ = p2, p > 0)λ = 0 =⇒ h(r) = C1+ C2log rEigenvalue problem: φ′′= −λφ, φ(0) = φ(π) = 0.Eigenvalues: λn= n2, n = 1, 2, . . .Eigenfunctions: φn(θ) = sin nθ.Dependence on r:r2h′′+ rh′= λh, h(0) = 0.=⇒ h(r) = C0rp(p =√λ)Solution of Laplace’s eq uation:u(r, θ) = rnsin nθ, n = 1, 2, . . .A superposition of the solutions with separatedvariables is a seriesu(r, θ) =X∞n=1cnrnsin nθ,where c1, c2, . . . are constants.Substituting the series into the boundary condit ionu(a, θ) = g(θ), we getg(θ) =X∞n=1cnansin nθ.Hence cn= bna−n, n = 1, 2, . . . , whereg(θ) =X∞n=1bnsin nθ.Solution.u(r, θ) =X∞n=1bnransin nθ,whereX∞n=1bnsin nθis t he Fourier sine series of the function g (θ) on[0, π], that is,bn=2πZπ0g(θ) sin nθ dθ, n = 1, 2, . .


View Full Document

TAMU MATH 412 - Lecture2-11web

Download Lecture2-11web
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture2-11web and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture2-11web 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?