Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 16.346 Astrodynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.    Lecture 30 Effect of J2 on a Satellite Orbit of the Earth #10.6 Variational Equations using the Disturbing Function Recall the variational equatioms ds ∂s ∂s dα 0 ∂s dα 0 = + = Fs += = dt ∂t ∂ α dt ad ⇒ ∂ α dt ad which we can write as T ∂r dα ∂v ∂r dα = 0= 0 ∂α dt ∂α ∂α dt or T  T∂v dα ∂r ∂v dα ∂r ∂α dt = ad ∂α ∂α dt = ∂α ad If we use the gradient of the disturbing function R for the disturbing acceleration ∂R aT = d ∂r then we have  T  T  T  T  T∂r ∂r ∂R ∂R ∂r ∂R ∂ α ad = ∂ α ∂r = ∂r ∂ α = ∂ α so that  T  T   T∂r ∂v ∂v ∂r dα ∂R ∂α ∂α − ∂α ∂α dt = ∂ α    Lagrange Matrix L Therefore, the variational equation using the matrix L is  Tdα ∂RL = dt ∂ α The Lagrange Matrix is skew-symmetric, i.e., L = −LT . Because of the skew-symmetry, there are only 15 elements to calculate and only 6 of these are different from zero. Lagrange’s Planetary Equations dΩ1 ∂R da 2 ∂R == dt nab sin i ∂i dt na ∂λ di 1 ∂R cos i∂R de b∂Rb2 ∂R dt = − nab sin i ∂Ω+ nab sin i ∂ω dt = − na3e ∂ω + na4e ∂λ dω cos i∂R b∂R dλ 2 ∂R b2 ∂R dt = − nab sin i ∂i + na3e ∂e dt = − na ∂a − na4e ∂e 16.346 Astrodynamics Lecture 30   Effect of the J2 Term on Satellite Orbits Gravitational potential function of the earth r kGm Gm ∞eqV (r, φ)= r − rJk rPk(cos φ) (8.92) k=2 = R where the angle φ is the colatitude with cos φ = i r · i z and i = [cos Ω cos(ω + f) − sin Ω sin(ω + f) cos i] i r x + [sin Ω cos(ω + f) + cos Ω sin(ω + f) cos i] i y Problem 3–21 + sin(ω + f) sin i i z Hence cos φ = sin(ω + f) sin i so that GmJ2r2 R = − 2p3 eq (1 + e cos f )3[3 sin2(ω + f) sin2 i − 1] + O[(r eq /r)3]  2π1 R = RdM where dM = ndt and r 2df = hdt 2π 0 1  2π n µJ2r2 =2π 0 hRr2df =4a3(1 − eq e2)32 (2 − 3 sin2 i) Averaged Variational Equations dΩ1 ∂R da = =0 dt nab sin i ∂i dt di de =0 =0 dt dt dω cos i∂R b∂R dλ 2 ∂R b2 ∂R dt = − nab sin i ∂i + na3e ∂e dt = − na ∂a − na4e ∂e For the Earth Problem 10–12 rrdΩ= − 3 J2 eq 2 n cos i = −9.96 eq 3.5 (1 − e 2)−2 cos i degrees/day dt 2 p a dω 3 r 2 r 3.5 dt =4J2 p eq n(5 cos2 i − 1)=5.0 a eq (1 − e 2)−2(5 cos2 i − 1) degrees/day Coefficients of the earth’s gravitational potential (×106 ) J2 =1, 082.28 ± 0.03 J5 = −0.2 ± 0.1 J3 = −2.3 ± 0.2 J6 =1.0 ± 0.8 J4 = −2.12 ± 0.05 16.346 Astrodynamics Lecture


View Full Document
Download Lecture Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?