MIT 16 346 - Derivation of the Time Equation

Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 16.346 Astrodynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.2 a3 2 1 a E ψ Identify ⇐⇒ µq q r(t⇐⇒a3 − τ)= E − sin E + sin E 0at − τ ⇐⇒ 1(t 22 − t1)since t2 − t1 =(t2 − τ)+(τ − t1)=2(t2 − τ). From the classical relation between the true and eccentric anomalies: 21 1+ e 21 2a − q 21 q 2 tan2 1 E tanf = tan E = tan E = = 22x 2 =1 − e 2 q 2 ⇒a tan2 1f 2 + tan2 1 E + x 2where we have defined x = tan21 E and  = tan21 f2 2 . Since 1F0S √r r cos θ 1 cos f FP F S cos f = = 1 2 2 then  =−= 0 2 −0F0P1 2 2(r1 + r2) 1 + cos f F0P2 + F0S Lecture 16 Non-Singular ``Gauss-Like'' Method for the BVP Derivation of the Time Equation Start with the Lagrange time equation and the equation for the mean point radius 3 1 2√ µ(t2 − t1)= a2 (ψ − sin ψ cos φ) (1) r2 10 = a(1 − cos φ)= r0p(1 + tan ψ2) (2) 1 r = 1  (r10p 2 21 + r2)+ √r1r2 cos θ 2 (3)FS = √ r1r2 cos 1θ 2 (4) Eliminate cos φ and compare with the elementary form of Kepler’s equation 1 µr(t− t )= ψ − sin ψ + 0 sin ψ16.346 Astrodynamics Lecture 16 Fig. 7.4 from An Introduction to the Mathematics and Methods of Astrodynamics. Courtesy of AIAA. Used with permission.Relation to Gauss’ Classical Method The time equation 1 (t2 µ q3 q q 2 tanq32 − t1) × = E × a3 − sin E + sin E = E a − sin E + a 1 + ta = sibecomes 1 µ 8 4 tan31 E(t2 − t31 2 2 q3 1) ×  tan sin  × E = E − E + ( + x)3 2 ( + x)(1 + Then, since q = r0 = r2 0p(1 + tan1E2 )= r0p(1 + x) we have an expression for the transfer time as a function only of E ≡ ψ : µ 4 tan31E 4 tan31E3 (t2 − t1) 2= E sin E + 28r× [( +3   x)(1 + x)]20p−( + x)(1 + x) m3 E − sin E m = m +[( + x)(1 + x)]3 4 tan3 1E ( + x)(1 + x2Following Gauss, we can define y as 2 m y = so that y 3− y 2E − sin E= m( + x)(1 + x) 4 tan31 E2 where µ(t2 2 − t1)r1 + r1 m = and = 2 √− 2 r1r2 cos θ 2 8r3 r1 + r10p2 +2√r1r2 cos θ2 Note: The new y does not have the same geometric significance as Gauss’ yParameter and Semimajor Axis q 2x r2 = = 0p(1 + x)1 2x 2xy= = =a  + x a ⇒ a r0p(1 + x)( + x) mr0p p sin φ c c(1 + x)2 cy2(1 + x)2 y2√ (1 + x)= = = = = p sin ψ 2a sin2 mψ 8ax 4mr0p m   12E n2 12En E x) ) . 2 where we have used the equation c =2a sin ψ sin φ from Lecture 9, Page 1 16.346 Astrodynamics Lecture 16Comparing the Structure of Gauss’ Method and the New Method Gauss’ Method New Method 1D √≡ r1r2 cos 11θD √≡ 4(r1 + r2 +2 r1r2 cos 22r1 + r2 2√1  − r cos = 1r2 θ r+ r2 = 1 2 − 2√r1r2 cos 1 θ 24D 4D µ(tm = 2 − t1)2 µ(t2 m = 2 D3 − t1)88D3 x ≡ sin2 1 ψ x 2≡ tan2 1 ψ 2y 2 m = y 2 m =  + x ( + x)(1 + x) y 3 − y 2 2ψ = m − sin 2ψ ψ ψ y 3 sin − 3 y 2 = m −sin ψ 4 tan3 1 ψ 2p cy2 p cy2 = = (1 + x)2 pm 4mD pm 4mD 1 2y2x1 2y2x = (1 − x) = a mD a mD Universal Form The equations are universal when x is extended to include the other conics: ⎧ ⎨ tan2 14(E2 − E1) ellipse x = 0 parabola ⎩ − tanh2 14(H2 − H1) hyperbola θ)16.346 Astrodynamics Lecture


View Full Document
Download Derivation of the Time Equation
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Derivation of the Time Equation and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Derivation of the Time Equation 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?