DOC PREVIEW
MIT 16 346 - Lecture 27 Variation of Parameters

This preview shows page 1-2 out of 5 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 16.346 Astrodynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.� � � � � �� � Lecture 27 Variation of Parameters Chapter 10 Lagrange’s Variational Methods for Linear Equations Consider the equation dy1 �� � �� � � � d2y + y = sec t = dt = y2 = dy1 =0 1 y1 +0 dt2 ⇒ dy2 + y1 = sec t ⇒ dt y2 −10 y2 sec t dt which is equivalent to dy = Fy + gdt where �� � � � � y = yy12 and F = −0101 and g = sec0 t Now the Wronskian matrix W sin t − cos t dWW = satisfies = FW cos t sin t dt and the solution of the homogeneous equation is yh = Wc where c = c1 c2 We now seek a solution of the general equation dy = Fy + g of the form y = Wc(t)dt Substitute and obtain dW dc dc c + W = FWc + g which reduces to W = gdt dt dt Hence dc = W−1gdt which is solved by quadratures to obtain dc sin t cos t 0 dc1 dc2= or = 1 and = tan t dt − cos t sin t sec t dt dt Hence c1(t)= t + c1 and c2(t) = log(sec t + tan t)+ c2 so that the general solution is simply y = Wc(t)or y(t)= c1(t) sin t − c2(t) cos t 16.346 Astrodynamics Lecture 27Derivation of the Variational Equations O I dt⎡r d ⎤= ⎡ µ ⎤⎡ds r ⎤= Fs + η ⎢ ⎥ ⎢ ⎥⎢dt ⎢0 ⎣ v ⎦ ⎥ ⎢⎣ −⎥⎦⎢⎣ + ⇐⇒ where IO v ⎡ ⎤ 3 ⎥ ⎢ ⎥⎦⎥⎣ ad ⎦ �r(t, α) rs = s(t, α)= v(t, α) � ∂s dsTwo-Body Motion: = Fs Disturbed Motion: = Fs + η ∂t dt Seek solutions of the form s = s(t, α1,α2,α3,α4,α5,α6) T �0where, for example, α =[Ω iωaeλ = −nτ ] and η = ad Differentiate � ds ∂s ∂s dα ∂s dα = + = Fs + η = = η dt ∂t ∂ α dt ⇒∂ α dt Since ∂s ∂ α ∂ α ∂s = = I ∂ α ∂s ∂s ∂ α then ∂ α ∂s dα ∂ α �∂ α ∂ α ��0 ∂ α = η = = a∂s ∂ α dt ∂s ∂r ∂vad ∂v dso that � dα ∂ α = adt ∂v dx = f(ξ,η) � dx � f=� ξ fη dξ ξ = F (x, y) dξ F x F y dx = y = g(ξ,η) dy g g�� dη � η = G(x, y) � dη � � G G �� dy � � ξ η ydx � � x fξ fη �� FxFy �� dx � � fξ fη �� F⇒xF= = y = I dy gξ gη G x G y dy gξ gη G x G y � Variation of the Classical Elements �2 1� 2 T µ ∂a T da 2a2 µ − = v = v v = v v = =2v = = v ar a · ⇒a2 ∂v ⇒dt µ · d∂h ∂vdh h = r × v = Sr v = ⇒ = S = S I = = ∂v r∂v rS r ⇒= r × adt d16.346 Astrodynamics Lecture 27∂h h2 = hT h =⇒ 2h =2hT dh S r = ⇒ = ih · r a∂v × d = ih × r · ad = r idt θ · ad or, alternately, dh 1 h2 =(r × v) · (r × v)= rT rvT v − rT vrT v = ⇒ = rT (rvT dt − vrT )ah dh2 p = = a(1 − e 2de da dh) = ⇒ 2µae = µ(1 )dt − e 2µ dt − 2hdt de µ = ad × (r × v)+(ad × r) × v dt Variation of i and Ω From Page 84 in the textbook h = h ih = h(sin Ω sin i i x − cos Ω sin i i y+ cos i i z ) .6)dh dΩ di dhThen = h sin i i dt n − h i m + idt dt dt hwhere i n = cos Ω i x + sin Ω i y (2.5) i m= ih × i n = − sin Ω cos i i x+ cos Ω cos i i y+ sin i i z (2.8)Hence dΩ1 r sin θ = i sin n dt × r ad = ih ah i · h sin i · ddi 1 r cos θ = dt − i h m × r · ad = i a h h· dwhere θ = ω + f is the argument of latitude. Variation of the true anomaly f h2 ∂f ∂e 2h ∂h r(1 + e cos f)= = µ ⇒ re sin f = r cos f∂v ∂v − µ ∂v µ ∂f ∂e r v ∂h hFrom Eq. (3.29) re sin f = r h· v = ⇒ re cos f = T v −r sin f + · + r∂ ∂v µ ∂v µ Multiply the first by cos f , the second by sin f and add to obtain ∂f ∂h df h ∂f reh =(p cos f) rT (p + r) sin f to be used in = + a∂v −∂v dt r2 ∂v d (216.346 Astrodynamics Lecture 27Variation of ω i n = cos Ω i x + sin Ω i y = ⇒ cos θ = in · i r = cos Ω (ix · i r) + sin Ω (iy · i r)Then ∂θ ∂Ω ∂θ ∂Ω − sin θ =[− sinΩ(i x · i r) + cos Ω (i v ∂y· i r)] = ∂v ⇒ = ∂v −cos i∂vsince ix · i r = cos Ω cos θ − sin Ω sin θ cos i iy · i r = sin Ω cos θ + cos Ω sin θ cos i This gives the perturbative derivative of θ , i.e., the change in θ due to the change in i n from which the angle θ is measured. The total time rate of change of θ is the sum dθ∂θ ∂θ h dΩ = + ad = cos i dt ∂t ∂v r2 −dt Since θ = ω + f , then dω∂f dΩ = − adt d − cos i ∂v dt Gauss’ form of Lagrange’s variational equations in polar coordinates dΩ r sin θ = adt h sin idh di r cos θ = adt h dhdω 1 r sin θ cos i = [−p cos fadr +(p + r) sin fadθ] − adt he h sin i dhda 2a2 =� pe sin fadr + adθ dt h r de 1 = {p sin fadr +[(p + r)� cos f + re]adt h dθ}df h 1 = + [p cos fadr − (p + r) sin fadθ]dt r2 ehGauss’ form of the variational equations in tangential-normal coordinates dω 1 � � r � � r sin θ cos i = 2 sin fadt + …


View Full Document
Download Lecture 27 Variation of Parameters
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture 27 Variation of Parameters and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 27 Variation of Parameters 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?