MIT 16 346 - Lecture 29 The Disturbing Function & Legendre Polynomials

Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 16.346 Astrodynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.where R, called the disturbing function, can be written as R = Gm �x 1 1 1 1 Gm ρ r Gm ρ − r · ρ d � = Gm �rρ cos α = cos = ρ3 d − α νx ρ3 � ρ �d −���� ρ � �−� Since 2 2 2 � �� � ρ d ν d (r − ρ) · (r − ρ) r− 2rρ cos α + ρ= = =1 2νx+x 2 ρ = =(1 2νx+x 2)−1 2 ρ2 ρ · ρ ρ2 − ⇒d−Generating Function for Legendre Polynomials L(x, ν)=(1 − 2νx + x 2)−1 ∞2= k� Pk(ν)x k=0 The Disturbing Function and Its Gradient Gm � 1+ � ∞r kR = Pρk(cos α)ρ k=2 � �� d2r µ m �∞� r �k+ r = G [Pdt2 r3 ρ2 ρ k +1(cos α) iρ − Pk (cos α) ir]k=1 16.346 Astrodynamics Lecture 29 � � �� Lecture 29 The Disturbing Function & Legendre Polynomials #8.4 The Disturbing Function Three-body equations of motion d2r1 = Gm2 (r2 − r1)+ Gm3 (r3 − r1)dt2 r3 r3 12 13 d2r2 m1 m3= G 3 (r1 − r2)+ G 3 (r3 − r2)dt2 r21 r23 d2r3 m1 m2= G (r1 − r3)+ G (r2 − r3)dt2 r3 r3 31 32 Ignore the third equation. Subtract the first equation from the second and define r = r2 − r1 ρ = r3 − r1 d = r − ρ µ = G(m1 + m2) m = m3 Then, the equation of relative motion may be written as d2rT + µ rT = −Gm 1 dT +1 ρ T = Gm ∂ 1 d − 1 r · ρ = ∂R dt2 r3 d3 ρ3 ∂r ρ3 ∂rProperties of Legendre Polynomials Ro� drigues’ formula1 dn P n(ν)= F [−n, n +1;1; 12(1 − ν)] = �� (nn0� ν2 P2− 1)n(ν)=1 n! dνPHyp1(ν)= ν ergeometric function P2 2(ν)= 1 2(3ν − 1) nP � n(ν) � − (2n 1)νP �� − n 1(ν)+(n � −12(5ν3 − 1)P n(ν)=0−2P3(ν)= 4 − 3ν) Recursion P2 81 ��formula 4(ν)= 1(35ν − 30ν +3) �� P m(ν)P n(ν) dν =0 �Orthogonality property −1 (n − 1)Pn (ν) − (2n − 1)νPn (ν)+ nP (ν)=0−1 n−2Laplace’s Sphere of Influence #8.5 Motion of m2 relative to m1 (planet) Motion of m2 relative to m3 (sun) d2r G(m1 + m2) 11 d2d G(m2 + m ) Gm d + ρ = 311 = r Gmdt− d r ρ 2 � ��r3 −3 � d3 ρ3 dt2 −d3 −1 r−ρ3 p � � 3 � aap d d 21 21 a23 a23 Primary accelerations �� �� � � �� �� �� � p G(m1 + m ) a = − 2G(m1 + m2) = pG(mr − i a = 1 + m2)21 r3 r2 r21 r2 p G(m2 + m3) G(m2 + m3) G(m2 + ma3) 23 = − d = ip a = d3 −d2d23 r2− 2rρ cos α + ρ2 Disturbing accelerations 1 1 Gmr2ad Gm23 = −Gm� r 3 − 1 1 ρ 3 � = 2� i1 (2 i2 ρ − i r � = x 2ρ r− i ) ρ r ρ rrad 21 � 11 = −Gm3 d + ρ �= �∂R3 �T Gm= 3 � ∞x k[Pk +1(ν) i P (ν) i ] d3 ρ3 ∂r ρ2 ρ−k rk=1 From Eq. (8.72) Gm3 Gm≈ x[P2 (ν) i −3� �� � ρ2 ρ P1 (ν) i r]= x(3ν iρ2 ρ − i r) a d Gm1 x 2 Gm Gmi − i = 1 � Gm= | | x4 2 1 2 4 1 23 2 ρ r 2x cos α +1= 1 2νx + x r r2 −r2 � − ≈r2 d Gm3 Gm3 Gma2 3 2 21 = x|3ν iρ − i r| = x � 9νρ2 ρ− 6ν cos α +1= x 2 ρ2 � 1+3ν16.346 Astrodynamics Lecture 29Determine the ratios ad 2 ρ2 23 Gm1 r 2rνρ + m11 2p −≈ × = (1 2νx + x )a r2G2 23 (m2 + m3) m2 + m3 ×x× − 1 ad Gm � ≈21 3 r2 m= 3 x �� 2 � x 2 p x 1+3ν2 1+3νa2 21 ≈ρ� ×G(m1 + m2) m1 + m2 ×� ×Set the ratios equal ad d 21 a23 m mp= 3p = a21 a23 ⇒ m1 + m2 × �1+3ν2 × x 5 = 1 (1 2νx + x 2)m2 + m3 × −5 m1(m1 + m2) 1x = m3(m2 + m3) ×√1+3ν2 Finally, 1 ≤ (1+3ν2) 1 10< 1.15 and for m2  m1 and m2  m3 r≈ � m2 x = 51 ρ m3 �� � 2 m5 Radius of Sphere of Influence in miles = P mS × aP in miles where mP is the mass of the Planet, aP is the semimajor axis of the Planet and mS is the mass of the Sun. 16.346 Astrodynamics Lecture


View Full Document

MIT 16 346 - Lecture 29 The Disturbing Function & Legendre Polynomials

Download Lecture 29 The Disturbing Function & Legendre Polynomials
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture 29 The Disturbing Function & Legendre Polynomials and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 29 The Disturbing Function & Legendre Polynomials 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?