DOC PREVIEW
MIT 18 02 - Laplace's Equation and Harmonic Functions

This preview shows page 1-2 out of 7 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable CalculusFall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.V7. Laplace's Equation and Harmonic Functions In this section, we will show how Green's theorem is closely connected with solutions to Laplace's partial differential equation in two dimensions: where w(x, y) is some unknown function of two variables, assumed to be twice differentiable. Equation (1) models a variety of physical situations, as we discussed in Section P of these notes, and shall briefly review. 1. The Laplace operator and harmonic functions. The two-dimensional Laplace operator, or laplacian as it is often called, is denoted by V2 or lap, and defined by The notation V2 comes from thinking of the operator as a sort of symbolic scalar product: In terms of this operator, Laplace's equation (1) reads simply Notice that the laplacian is a linear operator, that is it satisfies the two rules (3) v2(u+ v) = v2u + v2v , v2(cu) = c(v2u), for any two twice differentiable functions u(x, y) and v(x, y) and any constant c. Definition. A function w(x, y) which has continuous second partial derivatives and solves Laplace's equation (1) is called a harmonic function. In the sequel, we will use the Greek letters q5 and $ to denote harmonic functions; functions which aren't assumed to be harmonic will be denoted by Roman letters f,g, u, v, etc.. According to the definition, (4) 4(x, y) is harmonic H v2q5 = 0 . By combining (4) with the rules (3) for using Laplace operator, we see (5) q5 and $ harmonic + q5 +$ and cq5 are harmonic (c constant). Examples of harmonic functions. Here are some examples of harmonic functions. The verifications are left to the Exercises.2 V. VECTOR INTEGRAL CALCLUS A. Harmonic homogeneous polynomials1 in two variables. Degree 0: all constants c are harmonic. Degree 1: all linear polynomials ax + by are harmonic. Degree 2: the quadratic polynomials x2 -y2 and xy are harmonic; all other harmonic homogeneous quadratic polynomials are linear combinations of these: q5(x, y) = a(x2 -Y2)+ bxy, (a, b constants). Degree n: the real and imaginary parts of the complex polynomial (x + are harmonic. (Check this against the above when n = 2.) B. Functions with radial symmetry. Letting r = dm,the function given by $(r) = In r is harmonic, and its constant multiples clnr are the only harmonic functions with radial symmetry, i.e., of the form f (r). C. Exponentially growing or decaying oscillations. For all k the functions ekxsin ky and ekxcos ky are harmonic. In general, harmonic functions cannot be written down explicitly in terms of elementary functions. Nevertheless, we will be able to prove things about them, by using Green's theorem. 2. Harmonic functions and vector fields. The relation between harmonic functions and vector fields rests on the simple identity (6) div Vf = v2f, which is easily verified, since its truth is suggested symbolically by There is an important connection between harmonic functions and conservative fields which follows immediately from (6): (7) Let F = V f. Then div F = 0 f is harmonic. Another way to put this is to say: in a simply-connected region, (7') curl F = 0 and div F = 0 F = Vq5. where q5 is harmonic. This is just (7), combined with the criterion for gradient fields (Section V5, X). In other words, from the vector field viewpoint, the theory of harmonic functions and Laplace's equation is the same as the theory of conservative vector fields with zero divergence. Where do such functions and fields occur? 'A homogeneous polynomial in several variables is one in which all the terms have the same total degree, like x2y + 2y3 or x5 -6xZy3+4xy4.V7. LAPLACE'S EQUATION AND HARMONIC FUNCTIONS One place is in heat flow problems. Imagine a thin uniform metal plate which is insulated on the faces so no heat can enter or escape on the faces, and imagine that some temperature distribution is maintained along the edge of the plate. Then when the temperature distribution on the plate has reached steady-state, it will be given by a harmonic function $(x, y); namely, it must satisfy the heat equation (see Section P of these notes): q5,, + $,, = a2gt, but gt = 0 since the temperature is not changing with time, by assumption. Harmonic functions also occur as the potential functions for two-dimensional gravitational, electrostatic, and electromagnetic fields, in regions of space which are respectively free of mass, static charge, or moving charges. (Here, "two- dimensional" means not that the fields lie in the xy-plane, but rather that as fields in three-space, the vectors all lie in horizontal planes, and the field looks the same no matter what horizontal plane it is viewed in. A typical example would be the field arising from a uniform mass or charge distribution on a set of vertical wires, or from uniform currents on vertical wires.) 3. Boundary-value problems. As the example given above of a temperature distribution on a uniform insulated metal plate suggests, the typical problem in solving Laplace's equation would be to find a harmonic function satisfying given boundary conditions. That is, we are given a region R of the xy-plane, bounded by a simple closed curve C. The problem is to find a function g(x, y) which is defined and harmonic on R, and which takes on prescribed boundary values along the curve C. The boundary values are commonly given in one of two ways: (i) as the values of q5 along C; 84(ii) as the values of the normal derivative -of q5 along C. drl To explain this last, the normal -Inderivative is just the directional derivative in the direction of the (outward-pointing) unit normal vector n: 84 = 2= g .n (normal derivative) drl The tangential derivative is defined similarly, using the unit tangent vector t instead of n. For heat flow problems, boundary values of the first type (i) would be most common -you are maintaining a definite temperature distribution q5 along C and want to know what the temperature will look like in R. For conservative force field problems, with F = Vq5, one could also get boundary values of the second type (ii). For example, if you were given the field vector F at each point of C, then you would know Vq5. n and Vq5. t -the normal derivative and the tangential derivative -at each point of C. Knowing the tangential derivative


View Full Document

MIT 18 02 - Laplace's Equation and Harmonic Functions

Documents in this Course
Vectors

Vectors

1 pages

Exam 1

Exam 1

2 pages

Load more
Download Laplace's Equation and Harmonic Functions
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Laplace's Equation and Harmonic Functions and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Laplace's Equation and Harmonic Functions 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?