DOC PREVIEW
MIT 18 02 - Change of variable

This preview shows page 1 out of 2 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 2 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 2 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

18.02A Topic 33: Change of variable.Read: SN: CV18.01 example: Compute I =Rx√1 − x2dx.Direct substitution: u = 1 − x2, du = −2x dx → x dx = −12du⇒ I = −12R√u du.Inverse substitution: x = sin u, dx = cos u du ⇒ I =Rsin u cos2u du.Double integration:R RRf(x, y) dA.Direct substitution: u = u(x, y), v = v(x, y).Inverse substitution: x = x(u, v), y = y(u, v).Example: x = r cos θ, y = r sin θ.Finding dA = dx dy:Jacobian =∂(x,y)∂(u,v)=xuxvyuyv,∂(u,v)∂(x,y)=uxuyvxvy.dA = dx dy =∂(x,y)∂(u,v)du dv =1|∂(u,v)∂(x,y)|du dv.(Reason soon)Change of variable forR RRf(x, y) dx dy:(A) Change f(x, y) to u, v coordinates.(B) Express dA in terms of du dv.(C) Find u, v limits on R.Example: Given the region R shown, compute I =R RR(4x2− y2)4dy dx.Change of variable: u = 2x − y, v = 2x + y.(A) 4x2− y2= uv ⇒ f(x, y) = u4v4.(B)∂(u,v)∂(x,y)=uxuyvxvy=2 −12 1= 4.⇒∂(x,y)∂(u,v)=14. ⇒ dx dy =14du dv.(C) Limits:x = 0 ⇒ u = −y, v = y ⇒ v = −u.u: -2 to 0; fix u ⇒ v: −u to 2.I =Z0u=−2Z2v=−uu4v4dv du4.(Easy to compute.)/////////12122x + y = 22x − y = 0R/////////122v = 2u = 0v = −uu = −2(continued)118.02A topic 33 2Reason for change of variables formula:Draw ’grid’ lines u = c1, v = c2(in xy-plane).∆A = area P QRS ≈ parallelogram.In a moment we will see that−−→PQ ≈ hxu∆u, yu∆ui and−→PS ≈ hxv∆v, yv∆vi.Using this we have:∆A ≈ ±xu∆u xv∆vyu∆u yv∆v= ±xuxvyuyv∆u∆v =∂(x,y)∂(u,v)∆u∆v.⇒ dA =∂(x,y)∂(u,v)du dv.Now we show−−→PQ ≈ hxu∆u, yu∆ui.Let−−→PQ = h∆x, ∆yi (see picture).The approximation formula says: ∆x ≈ xu∆u + xv∆v and ∆y ≈ yu∆u + yv∆v.Going from P to Q we have ∆v = 0 ⇒ ∆x ≈ xu∆u and ∆y ≈ yu∆u.⇒−−→PQ ≈ hxu∆u, yu∆ui.Likewise for−→PS ≈ hxv∆v, yv∆vi.PQRS∆Av = v0OOu = u0+ ∆uoov = v0+ ∆vu = u0//99ttttttttttttttPQ∆x∆yDetail from picture at leftRemark on the chain rule:∂(x, y)∂(u, v)·∂(u, v)∂(x, y)= 1 orxuxvyuyv·uxuyvxvy= I⇔ 1


View Full Document

MIT 18 02 - Change of variable

Documents in this Course
Vectors

Vectors

1 pages

Exam 1

Exam 1

2 pages

Load more
Download Change of variable
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Change of variable and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Change of variable 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?