DOC PREVIEW
MIT 18 02 - Study Guide

This preview shows page 1-2 out of 5 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Exam 1Exam 2Exam 3Exam 418.02 Final Exam Formula Sheet Exam 1 Dot product AB⋅rr = ||||ABrr cos θ AB⋅rr= (a1b1 + a2b2) Cross product AB×rr= ||||ABrr sin θ ˆnArea of parallelogram is equal to half the length of the × prod Matrix arithmetic 1. Addition (A + B) add corresponding elements must be same shape 2. Multiplication (AB = C) multiply each element of row i by column j, then add 3. Inversion (A-1) A → M (minors) → C (cofactors) → J (adjoint) → divide by |A|-1 M: just determinant of the minors C: checkerboard signs J: flip around top left – bottom right diagonal One or many solutions If |A| is nonzero, the matrix has exactly one solution. If |A| = 0, the matrix has either 0 or ∞ solutions. Lines in parametric With P0 (x0, y0, z0) and v (a, b, c): r x = at + x0 y = bt + y0 z = ct + z0 Planes in parametric With P0 (x0, y0, z0) and v (a, b, c): r a(x-x0) + b(y-y0) + c(z-z0) = 0 because · v = 0 NrrGiven P1, P2, P3: Find 12 13,PP PP Take × prod to get NrGiven surface ax + by + cz, = a + b + c Nrˆiˆjˆk More parametric v(t) = dxdt + ˆiˆdyjdt + ˆdzkdt18.02 Final Exam Formula Sheet Intersection of curve/surface: sub curve eqn into surface Angle between two planes: Find 12,NN Take · prod Product rule for · and × ()dABdt⋅rr = dB dAABdt dt⋅+⋅rrrr ()dA B dB dAABdt dt dt×=× +×rrrrrr Exam 2 Tangent plane 00()(zzzz xx yyxy∂∂−= − + −∂∂0) 000(,,) 0 0 0 0 0 0[( ) ( ) ( )] ( ) ( ) ( )xyzffffxx yy zz xx yy zzxyz∂∂∂∇−+−+−=−+−+∂∂ ∂− Normal vector if z = f(x,y), ˆˆˆzzijxy∂∂+−∂∂k 000(,,)xyzf∇ Max/min Find partials, set to zero (critical points) d = fxxfyy – fxy2 d – saddle d + fxx + min fxx – max Chain rule z = f(u,v) zfdufdvxudx vdx∂∂ ∂=+∂∂ ∂ u = u(x) v = v(x) Gradient ˆˆfffijxy∂∂∇= +∂∂r magnitude ⇒ steepness, always points uphill18.02 Final Exam Formula Sheet Directional derivative ||RfR∇⋅rrr dzzsds∆≈ ∆ Lagrange multipliers f(x,y), restraint g(x,y) (, , ) (, ) (, )Lxy fxy xyλλ=− take,,LLLxyλ∂∂∂∂∂∂, set equal to zero, solve system Exam 3 Double integrals (, )bdacfx y dydx∫∫ Do inner ∫ as usual, treat outer variable as constant Do outer Polar coordinates (, )rfrrdrdθθθ∫∫ Integration applications Mass: RdAδ∫∫ Average of f over R: (, )RfxydAarea∫∫ Center of mass: RxdAxmassδ=∫∫ Moment of inertia: 2()axisRdist dAδ∫∫ Work: line integrals CCFdr Mdx Ndy⋅= +∫∫rr Paramaterize x and y as functions of t ⇒ 10ttdx dyMNddt dt+∫t) Gradient fields For a gradient field, ()(CFdr fend fstart⋅= −∫rrGradient field test: MNyx∂∂=∂∂ To find the potential function, integrate Mdx and Ndy. Green’s theorem18.02 Final Exam Formula Sheet CRNMMdx Ndy dAxy∂∂+= −∂∂∫∫∫ If Nx – My = 1, CFdr area⋅=∫rr Flux CRMNNdx Mdy dAxy∂∂−+ = +∂∂∫∫∫ Exam 4 Triple integrals 2211() (,)() (,)(, ,) (, ,)bgx hxyDagxhxyfxyz f xyzdzdydx=∫∫∫ ∫ ∫ ∫ get outer and middle variables from shadow Cylindrical coordinates (, , )rzfr z rdzdrdθθθ∫∫∫ cossinyrxrzzθθ=== Spherical coordinates 2(,,) sinfdddθϕρρϕθ ρ ϕ ρ ϕ θ∫∫∫ sin cossin sincosxyzρϕθρϕθρθ=== Applications of 3D integrals Mass: ∫∫∫D δ dV Average of f over D: ∫∫∫D f(x,y,z) dV volume D Center of mass: ∫∫∫D x δ dV Moment of inertia: ∫∫∫D (distance from axis)2 δ dV mass Gravitational attraction: G ∫∫∫D δ cos φ sin φ dV Surface integrals Find ∫∫S F · n ds. 1. Inspection. F · n is constant. ∫∫S F · n ds = (F · n)(area s) 2. Cylindrical/spherical coords. ∫z∫θ F · n (radius) dzdθ ncyl = x i + y j radius ∫θ∫φ F · n (radius)2 sin φ dφdθ nsph = x i + y j + z k radius 3. Rectangular case. S is z = f(x,y).18.02 Final Exam Formula Sheet ∫∫S F · n ds = ∫∫shadow F · (-fxi – fyj + k) dA Divergence theorem S is closed surface oriented outward §§ F · ds = ∫∫∫D (div F) dV *Flux div F = Mx + Ny + Pz = ∇ · F Stokes’ theorem §F · dr = ∫∫S ∇ × F ds *Work Properties of div, curl, grad 1. div(curl F) = 0 ∇ · (∇ × F) = 0 2. curl(gradient field) = 0 gradient field test: ∇ × F =


View Full Document

MIT 18 02 - Study Guide

Documents in this Course
Vectors

Vectors

1 pages

Exam 1

Exam 1

2 pages

Load more
Download Study Guide
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Study Guide and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Study Guide 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?