Unformatted text preview:

1@ MITApril 29, 2003 – Organic Optoelectronics - Lecture 20Organic LEDs – part 7• Solvation Effect - Review• Solid State Solvation• Exciton Dynamics in Disordered Organic Thin Films• Quantum Dot LEDsHandout on QD-LEDs: Coe et al., Nature 420, 800 (2002).Electroluminescence in Doped Organic Films2.Excitons transfer toluminescent dye1.Excitons formedfrom combinationof electrons andholes6.0 eVa-NPD2.6 eV5.7eVAlq32.7 eVelectronsexcitontrap stateslow work functioncathodetransparent anodeholesdopant molecule(luminescent dye)host molecules(charge transportmaterial)2400 500 600 700 8000.00.20.40.60.81.0Intensity [a.u.]Wavelength [nm]0.5 %1.5 %2.5 %4.5 %6 %Electroluminescence of x% DCM2 in Alq3OLEDsAlq335 nm35 nmtuning rangeAlqAlq33DCM2 in AlqDCM2 in Alq33low DCM2low DCM2high DCM2high DCM23... change in the spectral position of... change in the spectral position ofaborptionaborption/luminescence band/luminescence banddue to change in the polarity of the mediumdue to change in the polarity of the mediumÖsolvationsolvation is a physical perturbationphysical perturbation of lumophore’s molecular statesÖ isolated molecule (in a gas phase) and solvated moleculeare in the same chemical state(no solvent induced proton or electron transfer, ionization, complexation, isomerization)dipolarlumophoredipolarmoleculedipole - dipole interactionmodifies the energy structuremodifies the energy structureof the molecules∆E = ∆ 〈µ•Eloc〉∆E = ∆ 〈µ•Eloc〉Solid State Solvation (SSS)ElocRdipolar hostwith moment µpolarlumophore〈µ〉 > 0〈µ〉→ 0as R → large“self polarization”for strongly dipolar lumophores(aggregation possible for highly polar molecules)Eloc~ 107V/cm4Influence of µ0and µ1on Chromatic Shift Directionsolventsolute (chromophore)WITH DIPOLE MOMENT µµ0< µ1µ0< µ1SOLVENT POLARITYS0S1groundstateexcitedstateµ0> µ1µ0> µ1SOLVENT POLARITYS0S1∆E = ∆ 〈µ•E〉∆E = ∆ 〈µ•E〉Æ Bathochromic (red) PL shift Æ Hypsochromic (blue) PL shiftC6H6CHCl3C2H5OH (CH3)2S:O600 700 8000.00.51.0Intensity [a.u.]Wavelength [nm]C6H6CHCl3C2H5OH (CH3)2S:Othin filmthin film0 1.15 1.69 3.9OCNNCNSOLVENTDIPOLE MOMENTBulović et al., Chem. Phys. Lett. 287, 455 (1998).PL of DCM2 Solutions and Thin Film~ SOLVATOCHROMIC ~SHIFT[bathochromic (red) shift]5Ground State(equilibrium)µg, Eg,loc1µe, E*g,locExcited State(non-equilibrium)2Excited State(equilibrium)µe, Ee,loc3µg, E*e,locGround State(non-equilibrium)4Continuum, Dipole in Spherical Cavity Model:312)1(2aµεεElocrr+−=≡ΓεDynamic Relaxation Picture (a.k.a. solvation)500 600 700 800 9000.00.20.40.60.81.0Intensity [a.u.]Wavelength [nm]0.00.20.40.60.81.0Intensity [a.u.]1% DCM2 in Alq3Alq31% DCM2 in Zrq4Zrq4polar hostµ ~ 5.5 Dnon-polar host635 nm605 nmThin Film Photoluminescence6A “Cleaner” Experiment• Employ trace DCM2 so as to effectively eliminate aggregation• But still appreciably change local medium ⇒ use another dopant!• should be polar and optically inactive (i.e. wide band gap)DCM2Camphoric Anhydride (CA)Polystyrene (PS)1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.50.00.20.40.60.81.025%0%0.005% DCM2 DopingPL Spectra of Different PS:CA:DCM2 Films Normalized IntensityEnergy (eV)CA %:CA Doping and Electronic Susceptibility 0 5 10 15 20 2523456ε = 2.44 + 0.13 x (CA %)0.005% DCM2 DopingBulk Electronic Susceptibility of PS:CA:DCM2 Films Epsilon (at 100 KHz)Camphoric Anhydride Concentration (%)42 nm red shift from 0 to 25% CAResults unchanged even for 10x higher DCM2 concentration:DCM2 aggregation not the answerLocal fields are responsible for the spectral shifts…… and dielectric measurements suggest a “solvatochromic” effect.0 5 10 15 20 252.042.062.082.102.122.142.162.182.202.22605 nm563 nm0.005% DCM2 DopingPeak PL Energy of PS:CA:DCM2 Films Energy (eV)Camphoric Anhydride Concentration (%)7Dynamic Relaxation Picture (a.k.a. solvation)Solvation TheoryGround State(equilibrium)µg, Eg,loc1µe, E*g,locExcited State(non-equilibrium)2Excited State(equilibrium)µe, Ee,loc3µg, E*e,locGround State(non-equilibrium)4Continuum, Dipole in Spherical Cavity Model:312)1(2aµεεElocrr+−=≡Γεconstant with CA%n nearly constant with CA% (ranging from ~1.55 to ~1.65)gasE↓AEεΓ∆ −≈↓where3∆aµµAerr⋅=()32ΓΓ∆ aµµµEEgneεgasrrr+⋅−=↓↓Connecting Theory to Experiment0.4 0.5 0.6 0.7 0.8 0.9 1.01.901.952.002.052.102.152.20 Benzene Toluene Chloroform Dichlormethane Acetone Acetonitrile MethanolDCM2 Peak PL in Various SolventsSlope givesA ~ 0.55 eV Energy (eV)Γ (no units)()+−≡1212Γεεε0246810120.00.10.20.30.40.50.60.70.80.91.0ε (no units)Γ (no units)Gamma Functional Shape-5 0 5 10 15 20 25 302.022.042.062.082.102.122.142.162.182.202.220.52 eV0.62 eV0.57 eVA =Evolution of Peak PL Energy for PS:CA:DCM2 Films0.005% DCM2 Doping Experiment Energy (eV)Camphoric Anhydride Concentration (%)-5 0 5 10 15 20 25 302.022.042.062.082.102.122.142.162.182.202.22Evolution of Peak PL Energy for PS:CA:DCM2 Films0.005% DCM2 Doping Experiment Energy (eV)Camphoric Anhydride Concentration (%)8Exciton Dynamics in Time Dependant PLwavelengthtime2 ns25 nmtimewavelengthDynamic Spectral Shifts of DCM2 in Alq31.7 1.8 1.9 2.0 2.10.00.20.40.60.81.0720 680 640 6002% DCM2:Alq36.2 ns3.4 ns2.2 ns1.6 ns1.0 ns0.6 ns0.3 ns0.1 ns0 nstimeNormalized IntensityEnergy [ eV ]Wavelength [ nm ]DCM2Alq3~ ~ DCM2 PL red shifts > 20 nm over 6 ns ~DCM2 PL red shifts > 20 nm over 6 ns ~• Measurement performed on doped DCM2:Alq3films• Excitation at λ=490 nm (only DCM2 absorbs)1.71.81.92.02.1024681012Energy [ eV ]Intensity [ arb. units ]91.6 1.8 2.0 2.20.00.20.40.60.81.0Integrated Spectrum(0-10 ns)Spectrumat 1 nsNormalized IntensityEnergy [eV]750 700 650 600 550Wavelength [nm]Spectrumat 4 nsTime Evolution of 4% DCM2 in Alq3PL SpectrumT1S1S0FLUORESCENCEPHOSPHORESCENCEENERGY TRANSFERFÖRSTER, DEXTERor RADIATIVEINTERNALCONVERSIONABSORPTION10 ps1-10 ns>100 nsEnergydensity of availableS1 or T1 states Electronic Processes in Molecules100123451.801.851.901.952.002.052.102.152.20CH3CNAcetoneDMSOCHCl3CHCl2BenzeneEnergy [eV]Time [ns]680660640620600580Wavelength [nm]Time Evolution of DCM2 Solution PL SpectraWavelength [nm]Time [ns]012345600 650 700 75010% DCM2 in Alq310% DCM2 in Alq3Spectral Shift due to~ Exciton Diffusion ~~ Intermolecular Solid State Interactions ~35 nm35 nmwavelength shift11Each dye molecule experiences a different local medium⇒ variations in excitonic


View Full Document

MIT 6 973 - Electroluminescence in Doped Organic Films

Download Electroluminescence in Doped Organic Films
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Electroluminescence in Doped Organic Films and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Electroluminescence in Doped Organic Films 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?